9781119953401

Aircraft Design : A Systems Engineering Approach

by
  • ISBN13:

    9781119953401

  • ISBN10:

    1119953405

  • Format: Hardcover
  • Copyright: 2012-11-28
  • Publisher: Wiley

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $159.95 Save up to $15.99
  • Rent Book $143.96
    Add to Cart Free Shipping

    TERM
    PRICE
    DUE

Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Summary

Presenting in one volume the methodologies behind aircraft design, this book uses a systems engineering approach to cover the components and the issues affected by design procedures. The basic topics that are essential to the process, such as aerodynamics and controls, are covered first of all. The author then explains the design process in a holistic manner to emphasize the integration of individual components into the overall design. Throughout the book, the various design options are considered and weighed against each other, to give readers a practical understanding of the process overall.

Table of Contents

Symbols and Acronyms i 

Preface ii

Chapter 1 Aircraft Design Fundamentals 1

1.1. Introduction to Design 2

1.2. Engineering Design 5

1.3. Design Project Planning 9

1.4. Decision Making 10

1.5. Feasibility Analysis 13

1.6. Tort of Negligence 15

References 18

Chapter 2 Systems Engineering Approach 1

2.1. Introduction 2

2.2. Fundamentals of Systems Engineering 4

2.3. Conceptual System Design 6

2.3.1. Definition 6

2.3.2. Conceptual Design Flowchart 7

2.3.3. Technical Performance Measures 9

2.3.4. Functional Analysis 10

2.3.5. System Trade-off Analysis 11

2.3.6. Conceptual Design Review 12

2.4. Preliminary System Design 12

2.5. Detail System Design 13

2.6. Design Requirements 16

2.7. Design Review, Evaluation, and Feedback 17

2.8. Systems Engineering Approach in Aircraft Design 20

2.8.1. Implementation of Systems Engineering 20

2.8.2. Design Phases 22

2.8.3. Design Flowchart 23

2.8.4. Design Groups 26

2.8.5. Design Steps 27

References 30

Chapter 3 Aircraft Conceptual Design 1

3.1. Introduction 1

3.2. Primary Functions of Aircraft Components 3

3.3. Aircraft Configuration Alternatives 5

3.3.1. Wing Configuration 6

3.3.2. Tail Configuration 7

3.3.3. Propulsion System Configuration 7

3.3.4. Landing Gear Configuration 8

3.3.5. Fuselage Configuration 9

3.3.6. Manufacturing-Related Items Configuration 10

3.3.7. Subsystems Configuration 10

3.4. Aircraft Classification and Design Constraints 13

3.5. Configuration Selection Process and Trade-Off Analysis 18

3.6. Conceptual Design Optimization 25

3.6.1. Mathematical Tools 25

3.6.2. Methodology 28

Problems 37

References 42

Chapter 4 Preliminary Design 1

4.1. Introduction

4.2. Maximum Take-Off Weight Estimation 3

4.2.1. The General Technique 3

4.2.2. Weight Buildup 3

4.2.3. Payload Weight 5

4.2.4. Crew Weight 6

4.2.5. Fuel Weight 8

4.2.6. Empty Weight 18

4.2.7. Practical Steps of the Technique 20

4.3. Wing Area and Engine Sizing 21

4.3.1. A Summary of the Technique 21

4.3.2. Stall Speed 26

4.3.3. Maximum Speed 29

4.3.4. Take-Off Run 39

4.3.5. Rate OF Climb 45

4.3.6. Ceiling 50

4.4. Design Examples 55

Problems 67

References 72

Chapter 5 Wing Design 1

5.1. Introduction 1

5.2. Number of Wings 4

5.3. Wing Vertical Location 5

5.3.1. High Wing 7

5.3.2. Low Wing 9

5.3.3. Mid Wing 10

5.3.4. Parasol Wing 10

5.3.5. The Selection Process 11

5.4. Airfoil 11

5.4.1. Airfoil Design or Airfoil Selection 11

5.4.2. General Features of an Airfoil 14

5.4.3. Characteristic Graphs of an Airfoil 17

5.4.4. Airfoil Selection Criteria 23

5.4.5. NACA Airfoils 24

5.4.6. Practical Steps for Wing Airfoil Section Selection 33

5.5. Wing Incidence 38

5.6. Aspect Ratio 40

5.7. Taper Ratio 46

5.8. The Significance of Lift and Load Distributions 49

5.9. Sweep Angle 53

5.10. Twist Angle 66

5.11. Dihedral Angle 70

5.12. High Lift Device 74

5.12.1. The Functions of High Lift Device 74

5.12.2. High Lift Device Classification 76

5.12.3. Design Technique 80

5.13. Aileron 85

5.14. Lifting Line Theory 85

5.15. Accessories 90

5.15.1. Strake 90

5.15.2. Fence 91

5.15.3. Vortex generator 92

5.15.4. Winglet 92

5.16. Wing Design Steps 93

5.17. Wing Design Example 94

Problems 104

References 108

Chapter 6 Tail Design 1

6.1. Introduction 1

6.2. Aircraft Trim Requirements 5

6.2.1. Longitudinal Trim 6

6.2.2. Directional and Lateral Trim 13

6.3. A Review on Stability and Control 14

6.3.1. Stability 15

6.3.2. Control 20

6.3.3. Handling Qualities 21

6.4. Tail configuration 21

6.4.1. Basic Tail Configuration 21

6.4.2. Aft Tail Configuration 25

6.5. Canard or Aft Tail 31

6.6. Optimum Tail Arm 35

6.7. Horizontal Tail Parameters 38

6.7.1. Horizontal Tail Design Fundamental Governing Equation 38

6.7.2. Fixed, All Moving, or Adjustable 41

6.7.3. Airfoil Section 42

6.7.4. Tail Incidence 45

6.7.5. Aspect Ratio 48

6.7.6. Taper Ratio 49

6.7.7. Sweep Angle 49

6.7.8. Dihedral Angle 50

6.7.9. Tail Vertical Location 50

6.7.10. Other Tail Geometries 52

6.7.11. Control Provision 52

6.7.12. Final Check 53

6.8. Vertical Tail Design 54

6.8.1. Vertical Tail Design Requirements 54

6.8.2. Vertical Tail Parameters 55

6.9. Practical Design Steps 65

6.10. Tail Design Example 67

Problems 73

References 77

Chapter 7 Fuselage Design 1

7.1. Introduction 3

7.2. Functional Analysis and Design Flowchart 4

7.3. Fuselage Configuration Design and Internal arrangement 7

7.4. Ergonomics 9

7.4.1. Definitions 9

7.4.2. Human Dimensions and Limits 10

7.5. Cockpit Design 12

7.5.1. Number of Pilot and Crew Members 12

7.5.2. Pilot/Crew Mission 14

7.5.3. Pilot/Crew Comfort/Hardship Level 14

7.5.4. Pilot Personal Equipment 15

7.5.5. Control Equipment 16

7.5.6. Measurement Equipment 17

7.5.7. Level of Automation 18

7.5.8. External Constraints 19

7.5.9. Cockpit Integration 20

7.6. Passenger Cabin Design 22

7.7. Cargo Section Design 28

7.8. Optimum Length-to-Diameter Ratio 32

7.8.1. Optimum Slenderness Ratio for lowest fLD 32

7.8.2. Optimum Slenderness Ratio for Lowest Fuselage Wetted Area 37

7.8.3. Optimum Slenderness Ratio for the Lightest Fuselage 40

7.9. Fuselage Other Internal Segments 40

7.9.1. Fuel Tanks 40

7.9.2. Radar Dish 44

7.9.3. Wing Box 44

7.9.4. Power Transmission Systems 46

7.10. Lofting 46

7.10.1. Aerodynamics Considerations 47

7.10.2. Area Ruling 48

7.10.3. Radar Detectability 50

7.10.4. Fuselage Rear Section 50

7.11. Fuselage Design Steps 52

7.12. Design Example 53

Problems 65

References 70

Chapter 8 Propulsion System Design 1

8.1. Introduction 1

8.2. Functional Analysis and Design Requirements 3

8.3. Engine Type Selection 6

8.3.1. Aircraft Engine Classification 6

8.3.2. Selection of Engine Type 14

8.4. Number of Engines 22

8.4.1. Flight Safety 22

8.4.2. Other Influential Parameters 23

8.5. Engine Location 24

8.5.1. Design Requirements 24

8.5.2. General Guidelines 26

8.5.3. Podded versus Buried 28

8.5.4. Pusher versus Tractor 29

8.5.5. Twin-Jet Engine: Under-Wing versus Rear Fuselage 31

8.6. Engine Installation 34

8.6.1. Prop-driven Engine 34

8.6.2. Jet Engine 36

8.7. Propeller Sizing 40

8.8. Engine Performance 45

8.8.1. Prop-driven Engine 45

8.8.2. Jet Engine 46

8.9. Engine Selection 46

8.10. Propulsion System Design Steps 49

8.11. Design Example 50

Problems 55

References 61

Chapter 9 Landing Gear Design 1

9.1. Introduction 3

9.2. Functional Analysis and Design Requirements 4

9.3. Landing Gear Configuration 7

9.3.1. Single Main 8

9.3.2. Bicycle 9

9.3.3. Tail-gear 9

9.3.4. Tricycle 11

9.3.5. Quadricycle 11

9.3.6. Multi-bogey 12

9.3.7. Releasable Rail 12

9.3.8. Skid 12

9.3.9. Seaplane Landing Device 12

9.3.10. Human Leg 14

9.3.11. Landing Gear Configuration Selection Process 15

9.3.12. Landing Gear Attachment 15

9.4. Fixed, Retractable, or Separable Landing Gear 16

9.5. Landing Gear Geometry 19

9.5.1. Landing Gear Height 19

9.5.2. Wheel Base 23

9.5.3. Wheel Track 27

9.6. Landing Gear and Aircraft Center of Gravity 34

9.6.1. Tipback and Tipforward Angles Requirements 35

9.6.2. Take-off Rotation Requirement 36

9.7. Landing Gear Mechanical Subsystems/Parameters 42

9.7.1. Tire Sizing 42

9.7.2. Shock Absorber 43

9.7.3. Strut Sizing 44

9.7.4. Steering Subsystem 44

9.7.5. Landing Gear Retraction system 45

9.8. Landing Gear Design Steps 45

9.9. Landing Gear Design Example 46

Problems 57

References 62

Chapter 10 Weight of Components 1

10.1. Introduction 2

10.2. Sensitivity of Weight Calculation 4

10.3. Aircraft Major Components 8

10.4. Weight Calculation Technique 12

10.4.1. Wing Weight 14

10.4.2. Horizontal Tail Weight 15

10.4.3. Vertical Tail Weight 15

10.4.4. Fuselage Weight 15

10.4.5. Landing Gear Weight 16

10.4.6. Installed Engine Weight 17

10.4.7. Fuel System Weight 17

10.4.8. Weight of Other Equipment and Subsystems 18

10.5. Chapter Examples 19

Problems 23

References 26

Chapter 11 Aircraft Weight Distribution 1

11.1. Introduction 2

11.2. Aircraft Center of Gravity Calculation 5

11.3. Center of Gravity Range 11

11.3.1. Fixed or Variable Center of Gravity 11

11.3.2. Center of Gravity Range Definition 12

11.3.3. Ideal Center of Gravity Location 14

11.4. Longitudinal Center of Gravity Location 16

11.5. Technique to Determine the Aircraft Forward and Aft Center of Gravity 24

11.6. Weight Distribution Technique 32

11.6.1. Fundamentals of Weight Distribution 32

11.6.2. Longitudinal Stability Requirements 35

11.6.3. Longitudinal Controllability Requirements 36

11.6.4. Longitudinal Handling Quality Requirements 37

11.7. Aircraft Mass Moment of Inertia 39

11.8. Chapter Example 45

Problems 49

References 57

Chapter 12 Design of Control Surfaces 2

12.1. Introduction 2

12.2. Configuration Selection of Control Surfaces 9

12.3. Handling Qualities 10

12.3.1. Definitions 12

12.3.2. Longitudinal Handling Qualities 15

12.3.3. Lateral-Directional Handling Qualities 18

12.4. Aileron Design 26

12.4.1. Introduction 26

12.4.2. Principles of Aileron Design 28

12.4.3. Aileron Design Constraints 38

12.4.4. Steps of Aileron Design 43

12.5. Elevator Design 45

12.5.1. Introduction 45

12.5.2. Principles of Elevator Design 46

12.5.3. Take-off Rotation Requirement 51

12.5.4. Longitudinal Trim Requirement 56

12.5.5. Elevator Design Procedure 60

12.6. Rudder Design 62

12.6.1. Introduction to Rudder Design 62

12.6.2. Fundamentals of Rudder Design 66

12.6.3. Rudder Design Steps 88

12.7. Aerodynamic Balance and Mass Balance 93

12.7.1. Aerodynamic Balance 95

12.7.2. Mass Balance 103

12.8. Chapter Examples 104

12.8.1. Aileron Design Example 104

12.8.2. Elevator Design Example 110

12.8.3. Rudder Design Example 120

Problems 128

References 136

Appendix

Appendix A: Standard Atmosphere, SI Units

Appendix B: Standard Atmosphere, British Units

Index

Rewards Program

Write a Review