did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780131008458

Applied Mathematics for Physical Chemistry

by
  • ISBN13:

    9780131008458

  • ISBN10:

    0131008455

  • Edition: 3rd
  • Format: Paperback
  • Copyright: 2003-09-15
  • Publisher: Prentice Hall

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
  • Buyback Icon We Buy This Book Back!
    In-Store Credit: $1.05
    Check/Direct Deposit: $1.00
    PayPal: $1.00
List Price: $60.40 Save up to $39.26
  • Rent Book $21.14
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    IN STOCK USUALLY SHIPS IN 24 HOURS.
    HURRY! ONLY 1 COPY IN STOCK AT THIS PRICE
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

Supplemental Materials

What is included with this book?

Summary

A how to do it review and learn book on advanced mathematics necessary to physical chemistry. Coordinate systems, functions and graphs, logarithms, differential calculus, integral calculus, infinite series, differential equations, scalars and vectors, matrices and determinants, operators, numerical methods and the use of the computer, and mathematical methods in the laboratory. Educators, Technicians, and other professionals using mathematics in physical chemistry.

Table of Contents

Coordinate Systems
Functions and Graphs
Logarithms
Differential Calculus
Integral Calculus
Differential Equations
Infinite Series
Scalars and Vectors
Matrices and Determinants
Operators
Numerical Methods and the Use of the Computer
Mathematical Methods in the Laboratory
Appendices
Answers
Index
Table of Contents provided by Publisher. All Rights Reserved.

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Excerpts

A perusal of many modern physical chemistry texts demonstrates that most authors of these texts and the professors who use them, such as myself, expect students to know a great deal more mathematics than is covered in the calculus courses normally required for physical chemistry courses. Moreover, we honestly expect that our students will know how to apply the mathematics they have learned to physical problems. Unfortunately, many of my colleagues and I have found that this generally is not the case. It was this observation, along with the fact that I was spending a great deal of lecture time teaching mathematics rather than physical chemistry in my physical chemistry course, that inspired me to write the first edition of this text some 30 years ago. It is my intention, therefore, that this third edition be used as a supplement along with the student''s physical chemistry textbook, to help students either review or, perhaps, learn for the first time those areas of mathematics that are essential to an understanding of physical chemistry, and, more importantly, to apply that mathematics to physical problems. The purpose of the book is not to replace the mathematics courses that are prerequisite to the physical chemistry course, but to be a how to do it review mathematics textbook. Consequently, the problems at the end of each chapter are designed to test the reader''s mathematical skills, not his or her skills in solving physical chemistry problems. Like the first two editions, the first five chapters concentrate on subject matter normally covered in prerequisite mathematics courses and should be a review. Again, an emphasis in the chapter on integral calculus has been placed an using integral tables, and, in keeping with the original intent of the book, mathematical rigor was kept at a minimum, giving way to intuition where possible. The latter half of the text covers important material normally not covered in prerequisite courses, but, for the most part, at an introductory level. For example, the chapter on differential equations emphasizes the solution of second-order linear differential equations with constant coefficients, common to many simple problems in wave mechanics. Also, as in the second edition, sections on the series method of solving differential equations are included. The sections on Fourier series and Fourier transforms have been expanded in this edition to include discrete Fourier transforms and well as continuous Fourier transforms. Discrete Fourier transforms are important in many areas of spectroscopy, since they can be handled by digital computers. Finally, the chapter on numerical methods has been completely revised. In the second edition, we concentrated on writing programs using BASIC to do the numerical calculations. Over the recent years, however, there has been a move away from using compiled programs for doing scientific computations toward the use of spreadsheets, such as Microsoft Excel, for such computations. Thus, the new chapter concentrates on using a spreadsheet to do many standard numerical calculations, such as numerical integration, fitting curves to experimental data, and finding discrete Fourier transforms of functions. As I mentioned in the Preface to the second edition, a text such as this could not be a success without the contributions of a number of people. I especially wish to thank Professor John Bopp, Nazareth College; Professor Wayne Bosma, Bradley University; and Professor Greg Peters, University of Memphis for their careful and critical review of the second edition and their many helpful comments and suggestions. I also would like to thank Professor John Wheeler of the University of California, San Diego, for finding a serious error in one of the examples in the chapter on infinite series in the second edition that survived from the first edition. I thank my editor John Challice, Project Manager Kristen Kaiser, Production Editor Donna Young, and all those individuals at Prentice Hall ESM and Write With, Inc. who helped to improve immensely the quality of the text. Finally, I wish to thank my son, Stephen Barrante, who designed the cover for this edition, my wife Marlene, and our family for their patience and encouragement during the preparation of this book. I welcome comments on the text and ask that any comments or errors found be sent to me at jrbarrante@aol.com. JAMES R. BARRANTE

Rewards Program