Biochemistry: A Short Course

by ; ;
  • ISBN13:


  • ISBN10:


  • Edition: 3rd
  • Format: Paperback
  • Copyright: 4/24/2015
  • Publisher: W. H. Freeman

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $59!
    Your order must be $59 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
  • We Buy This Book Back!
    In-Store Credit: $47.04
    Check/Direct Deposit: $44.80
  • eCampus.com Device Compatibility Matrix

    Click the device icon to install or view instructions

    Apple iOS | iPad, iPhone, iPod
    Android Devices | Android Tables & Phones OS 2.2 or higher | *Kindle Fire
    Windows 10 / 8 / 7 / Vista / XP
    Mac OS X | **iMac / Macbook
    Enjoy offline reading with these devices
    Apple Devices
    Android Devices
    Windows Devices
    Mac Devices
    iPad, iPhone, iPod
    Our reader is compatible
    Android 2.2 +
    Our reader is compatible
    Kindle Fire
    Our reader is compatible
    10 / 8 / 7 / Vista / XP
    Our reader is compatible
    Our reader is compatible
List Price: $225.99 Save up to $158.19
  • Rent Book $67.80
    Add to Cart Free Shipping


Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.


Derived from the classic text originated by Lubert Stryer and continued by John Tymoczko and Jeremy Berg, Biochemistry: A Short Course focuses on the major topics taught in a one-semester biochemistry course. With its short chapters and relevant examples, it’s uniquely effective in helping students see the connections between the biochemistry they’re studying and their own lives.
This new edition takes into account recent discoveries and advances that have changed how we think about the fundamental concepts in biochemistry and human health. A number of new interactive features are designed to help instructors create a more active environment in the classroom. Those new resources are found in LaunchPad, the third edition’s dedicated version of W.H. Freeman’s breakthrough online course space.

See what's in the LaunchPad

Author Biography

John L. Tymoczko is Towsley Professor of Biology at Carleton College, where he has taught since 1976. He currently teaches Biochemistry, the Metabolic Basis
of Human Disease, Oncogenes and the Molecular Biology of Cancer, and Exercise Biochemistry and co-teaches an introductory course, Energy Flow in Biological
Systems. Professor Tymoczko received his B.A. from the University in Chicago in 1970 and his Ph.D. in Biochemistry from the University of Chicago with
Shutsung Liao at the Ben May Institute for Cancer Research in 1973. He then held a postdoctoral position with Hewson Swift of the Department of Biology at
the University of Chicago. The focus of his research has been on steroid receptors, ribonucleoprotein particles, and proteolytic processing enzymes.

Jeremy M. Berg received his B.S. and M.S. degrees in Chemistry from Stanford (where he did research with Keith Hodgson and Lubert Stryer) and his Ph.D. in Chemistry from Harvard with Richard Holm. He then completed a postdoctoral fellowship with Carl Pabo in Biophysics at Johns Hopkins University School of Medicine. He was an Assistant Professor in the Department of Chemistry at Johns Hopkins from 1986 to 1990. He then moved to Johns Hopkins University School of Medicine as Professor and Director of the Department of Biophysics and Biophysical Chemistry, where he remained until 2003. He then became Director of the National Institute of General Medical Sciences at the National Institutes of Health. In 2011, he moved to the University of Pittsburgh where he is now Professor of Computational and Systems Biology and Pittsburgh Foundation Chair and Director of the Institute for Personalized Medicine. He served as President of the American Society for Biochemistry and Molecular Biology from 2011-2013. He is a Fellow of the American Association for the Advancement of Science and a member of the Institute of Medicine of the National Academy of Sciences. He received the American Chemical Society Award in Pure Chemistry (1994) and the Eli Lilly Award for Fundamental Research in Biological Chemistry (1995), was named Maryland Outstanding Young Scientist of the Year (1995), received the Harrison Howe Award (1997), and received public service awards from the Biophysical Society, the American Society for Biochemistry and Molecular Biology, the American Chemical Society, and the American Society for Cell Biology. He also received numerous teaching awards, including the W. Barry Wood Teaching Award (selected by medical students), the Graduate Student Teaching Award, and the Professor’s Teaching Award for the Preclinical Sciences. He is coauthor, with Stephen J. Lippard, of the textbook Principles of Bioinorganic Chemistry.

Lubert Stryer is Winzer Professor of Cell Biology, Emeritus, in the School of Medicine and Professor of Neurobiology, Emeritus, at Stanford University,
where he has been on the faculty since 1976. He received his M.D. from Harvard Medical School. Professor Stryer has received many awards for his research on the
interplay of light and life, including the Eli Lilly Award for Fundamental Research in Biological Chemistry, the Distinguished Inventors Award of the Intellectual
Property Owners’ Association, and election to the National Academy of Sciences and the American Philosophical Society. He was awarded the National Medal
of Science in 2006. The publication of his first edition of Biochemistry in 1975 transformed the teaching of biochemistry.

Table of Contents

Section 1: Biochemistry
Chapter 1: Biochemistry and the Unity of Life
Chapter 2: Water, Weak Bonds and the Generation of Order Out of Chaos

Section 2: Protein Composition and Structure
Chapter 3: Amino Acids
Chapter 4: Protein Three-Dimensional Structure
Chapter 5: Techniques in Protein Biochemistry

Section 3: Basic Concepts and Kinetics of Enzymes
Chapter 6: Basic Concepts of Enzyme Action
Chapter 7: Kinetics and Regulation
Chapter 8: Mechanisms and Inhibitors
Chapter 9: Hemoglobin, An Allosteric Protein

Section 4: Carbohydrates and Lipids
Chapter 10: Carbohydrates
Chapter 11: Lipids

Section 5: Cell Membranes, Channels, Pumps and Receptors
Chapter 12: Membrane Structure and Function
Chapter 13: Signal-Transduction Pathways

Section 6: Basic Concepts and Design of Metabolism
Chapter 14: Digestion: Turning a Meal into Cellular Biochemicals
Chapter 15: Metabolism: Basic Concepts and Design

Section 7: Glycolysis and Gluconeogenesis
Chapter 16: Glycolysis
Chapter 17: Gluconeogenesis

Section 8: The Citric Acid Cycle
Chapter 18: Preparation for the cycle
Chapter 19: Harvesting electrons from the cycle

Section 9: Oxidative Phosphorylation
Chapter 20: The Electron-Transport Chain
Chapter 21: The Proton-Motive Force
Section 10: The Light Reactions of Photosynthesis and the Calvin Cycle
Chapter 22: The Light Reactions
Chapter 23: The Calvin Cycle

Section 11: Glycogen Metabolism and the Pentose Phosphate Pathway
Chapter 24: Glycogen Degradation
Chapter 25: Glycogen Synthesis
Chapter 26: The Pentose Phosphate Pathway

Section 12: Fatty Acid and Lipid Metabolism
Chapter 27: Fatty Acid Degradation
Chapter 28: Fatty Acid Synthesis
Chapter 29: Lipid Synthesis: Storage Lipids, Phospholipids, and Cholesterol

Section 13: The Metabolism of Nitrogen-Containing Molecules
Chapter 30: Amino Acid Degradation and the Urea Cycle
Chapter 31: Amino Acid Synthesis
Chapter 32: Nucleotide Metabolism

Section 14: Nucleic Acid Structure and DNA Replication
Chapter 33: The Structure of Informational Macromolecules: DNA and RNA
Chapter 34: DNA Replication
Chapter 35: DNA Repair and Recombination

Section 15: RNA Synthesis, Processing and Regulation
Chapter 36: RNA Synthesis and Regulation in Bacteria
Chapter 37: Gene Expression in Eukaryotes
Chapter 38: RNA Processing in Eukaryotes

Section 16: Protein Synthesis and Recombinant DNA Techniques
Chapter 39: The Genetic Code
Chapter 40: The Mechanism of Protein Synthesis
Chapter 41: Recombinant DNA Techniques


Rewards Program

Write a Review