did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9781402077074

Printed Organic and Molecular Electronics

by ; ; ;
  • ISBN13:

    9781402077074

  • ISBN10:

    1402077076

  • Format: Hardcover
  • Copyright: 2004-03-01
  • Publisher: Kluwer Academic Pub
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $279.99 Save up to $199.33
  • Digital
    $174.77
    Add to Cart

    DURATION
    PRICE

Supplemental Materials

What is included with this book?

Summary

During the 1980s, functional organic devices were born. For nearly twenty years, organic semiconductor technology has largely been the domain of traditional players within the microelectronics world, involving semiconductor companies, research laboratories, and government organizations. The print industry, a well-established community who shaped much of the Second Millennium, has joined the organic electronics quest during these first few years of the Third Millennium. This seemingly unlikely marriage of two worlds, the microelectronics and graphic print industries, shows incredible promise to spawn an entirely new method of electronics manufacture and, ultimately, whole new industries. The enhancements of organic semiconductor materials seen during the late 1990s and early 2000s have resulted in the fabrication of organic electronics in laboratory environments with impressive performance. Since the early 2000s, scientists have succeeded in applying printing-related technologies to create organic field effect transistors (OFETs) with micron-sized features. This has led to a widespread vision of developing printed electronic products, especially displays, sensors, and simple wireless products (such as RFID tags). The development of high-volume manufacturing platforms based on traditional graphic arts printing platforms naturally addresses demands on product cost and throughput. Moreover, graphics art printing technologies allow one to fabricate organic circuits directly onto low-cost sheet or roll substrates, including plastics and paper. Printed Organic And Molecular Electronics was compiled to create a reference that included existing knowledge from the most renowned industry, academic, and government experts in the fields of organic semiconductor technology, graphic arts printing, micro-contact printing, and molecular electronics. It is divided into sections that consist of the most critical topics required for one to develop a strong understanding of the states of these technologies and the paths for taking them from R&D to the hands of consumers on a massive scale. As such, the book provides both theory as well as technology development results and trends.

Table of Contents

Preface xvii
Editor Biographies xxi
Chapter 1 An Introduction to Organic Semiconductors 1(82)
1.1 Organic Semiconductor Device History
1(36)
1.1.1 A New Frontier
1(2)
1.1.2 Thin-Film Electronics - A Brief Perspective
3(4)
1.1.3 Organic Transistors
7(12)
1.1.4 From Devices to Circuits
19(6)
1.1.5 Displays and Sensors
25(3)
1.1.6 Summary
28(2)
1.1.7 Section 1.1 References
30(7)
1.2 Recent Advances and Trends in Organic Semiconductor Devices
37(19)
1.2.1 Gate Dielectrics
37(4)
1.2.2 Device Models
41(2)
1.2.3 Digital Circuit Design
43(7)
1.2.4 Alternative Semiconductors
50(1)
1.2.5 Section 1.2 References
50(6)
1.3 Issues to Overcome for Diffusion of Organic Semiconductor Devices
56(20)
1.3.1 Large-Area Electronics
62(4)
1.3.2 Thin-Film Transistors
66(1)
1.3.3 Role of the United States Department of Defense Research
67(4)
1.3.4 Integration
71(1)
1.3.5 Economic Driving Factor: Cost Sensitivity
72(2)
1.3.6 Section 1.3 References
74(2)
1.4 Organic Semiconductors vs. Traditional Silicon Semiconductors
76(7)
1.4.1 Section 1.4 References
82(1)
Chapter 2 Organic Semiconductor Materials 83(78)
2.1 Introduction
83(1)
2.1.1 Organic Electronic Components
83(1)
2.2 The Chemistry of Semiconductors Based on Organic Materials
84(21)
2.2.1 Chemical Engineering of Molecules
84(1)
2.2.2 Acenes and Oligophenylenes
85(4)
2.2.3 Heterocycle-Based Linear Oligomers
89(13)
2.2.4 Two-Dimensional Fused Rings
102(3)
2.3 Polymeric Semiconductors
105(12)
2.3.1 Polyacetylene, Polythiophene, PPV, and Related Systems
105(7)
2.3.2 Emerging Areas of Interest
112(5)
2.4 Molecular and Physical Properties
117(14)
2.4.1 Chemical Structure
117(6)
2.4.2 Techniques for Film Deposition
123(6)
2.4.3 Structural Organization, Electrical, and Optical Properties
129(1)
2.4.4 p- and n-Type Organic Semiconductors
130(1)
2.5 Charge Transport Mechanism
131(11)
2.5.1 Intrachain
131(3)
2.5.2 Interchain
134(4)
2.5.3 Intergrain
138(4)
2.6 Passive Materials and Packaging
142(5)
2.6.1 Contacts and Charge Injection
142(1)
2.6.2 Dielectrics and Stability
142(4)
2.6.3 Fabrication Processes
146(1)
2.6.4 Interconnects and Architectures
146(1)
2.7 Summary and Outlook
147(1)
2.8 Chapter 2 References
148(13)
Chapter 3 Manufacturing Platforms for Printing Organic Circuits 161(186)
3.1 Critical Material Parameters for Printing Organic Circuits: Suspensions, Solutions, and the Solids State
161(32)
3.1.1 Transition from Vacuum to Ambient (Room Temperature and Pressure) Circuit Processing
161(2)
3.1.2 Introduction to Ink
163(6)
3.1.2.1 Colorant
164(1)
3.1.2.2 Binder
165(1)
3.1.2.3 Solvent
165(1)
3.1.2.4 Additives
165(2)
3.1.2.5 Ink Preparation
167(1)
3.1.2.6 The Example of a Glass of Water Containing Beach Sand
168(1)
3.1.3 Key Components, Functional Descriptions
169(3)
3.1.3.1 Conductive: Electron Conduit, Wires, Resistors, Interconnects
171(1)
3.1.3.2 Non-Conductive: Electron Barriers, Dielectrics, Anti-Vias
171(1)
3.1.3.3 Semiconductive: Switchable Electron Barrier, Active Material
171(1)
3.1.3.4 Barrier Coatings .
172(1)
3.1.4 Overview of Common Ink Design Considerations
172(6)
3.1.4.1 Rheology
174(1)
3.1.4.2 Surface Energy/Surface Tension
175(3)
3.1.5 Specific, Critical Material Properties
178(6)
3.1.5.1 Conductive Inks
178(4)
3.1.5.2 Dielectric Materials
182(2)
3.1.5.3 Semiconductor
184(1)
3.1.6 General Printing-Related Phenomenon and Considerations
184(3)
3.1.7 Specific Printing-Related Phenomenon and Considerations
187(4)
3.1.7.1 Lithographic Inks
187(1)
3.1.7.2 Flexographic Inks
188(1)
3.1.7.3 Gravure Inks
188(1)
3.1.7.4 Screen Printing Inks
189(1)
3.1.7.5 Inkjet Inks
190(1)
3.1.8 Transitional Discussion for Proposed Printing Platforms
191(1)
3.1.9 Section 3.1 References
192(1)
3.2 Lithography
193(53)
3.2.1 History Of Lithograhpy
193(2)
3.2.2 Offset Lithography Today
195(27)
3.2.2.1 Lithographic Plates
195(7)
3.2.2.2 Inking Systems
202(1)
3.2.2.3 Ink Characterization
203(3)
3.2.2.4 Ink Drying
206(2)
3.2.2.5 Ink Composition
208(2)
3.2.2.6 Types of Lithographic Inks
210(5)
3.2.2.7 Fountain Solutions
215(4)
3.2.2.8 Lithographic Blankets
219(2)
3.2.2.9 Properties Required In an Offset Blanket
221(1)
3.2.3 The Lithographic Press
222(24)
3.2.3.1 Sheetfed Presses
225(5)
3.2.3.2 Modern Automated Press
230(1)
3.2.3.3 Web Offset Printing
231(15)
3.3 Flexography
246(101)
3.3.1 Basic Principles
246(1)
3.3.2 Flexographic Image Carrier
247(1)
3.3.3 Plate Types
247(9)
3.3.3.1 Rubber Plates
247(1)
3.3.3.2 Photopolymer Plates
247(9)
3.3.4 Plate Mounting
256(3)
3.3.4.1 Mounting Tape
256(1)
3.3.4.2 Mounting and Proofing
256(1)
3.3.4.3 Plate Cylinder
257(1)
3.3.4.4 Plate Sleeves
257(2)
3.3.5 Impression Cylinder
259(1)
3.3.6 Ink Metering Systems
260(1)
3.3.7 Anilox Rolls
260(1)
3.3.7.1 Mechanically Engraved or Embossed Metal Roll
260(1)
3.3.7.2 Laser Engraved Ceramic Roll
261(1)
3.3.8 Doctoring
261(3)
3.3.8.1 Doctor Roll
263(1)
3.3.8.2 Reverse Angle Blade
263(1)
3.3.8.3 Enclosed Doctor Blade
264(1)
3.3.8.4 Doctor Blades
264(1)
3.3.9 Flexographic Press Configurations
264(4)
3.3.9.1 In-Line Flexographic Presses
264(1)
3.3.9.2 Stack Presses
265(2)
3.3.9.3 Central Impression
267(1)
3.3.10 Gearless Presses
268(6)
3.3.11 Artwork Considerations
269(1)
3.3.12 Factors Affecting Print Quality
270(2)
3.3.13 Suitability for Printing Electronics
272(1)
3.3.14 General Specifications
273(1)
3.4 Basic Principles of Gravure Printing
274(26)
3.4.1 The Gravure Image Carrier
276(7)
3.4.1.1 Chemical Etching
276(3)
3.4.1.2 Electromechanical Engraving
279(2)
3.4.1.3 Laser Engraving
281(2)
3.4.2 Doctoring
283(5)
3.4.2.1 Blade Types
284(3)
3.4.2.2 Contact Angle
287(1)
3.4.2.3 Applied Pressure
288(1)
3.4.3 Impression Roll
288(2)
3.4.3.1 Materials
289(1)
3.4.3.2 Loading
290(1)
3.4.4 Gravure Press Configurations
290(4)
3.4.4.1 Direct (Rotary)
290(3)
3.4.4.2 Offset (Flat and Rotary)
293(1)
3.4.5 Electrostatic Assist
294(1)
3.4.6 Gravure Inks
295(1)
3.4.7 Factors Affecting Print Quality
295(3)
3.4.7.1 Substrate
295(2)
3.4.7.2 Cylinder
297(1)
3.4.7.3 Engraving
297(1)
3.4.7.4 Doctoring
297(1)
3.4.7.5 Ink Viscosity
298(1)
3.4.8 Suitability for Printing Electronics
298(1)
3.4.9 Typical Gravure Specifications
299(1)
3.5 Pad Printing
300(7)
3.5.1 Pad Printing Basics
300(2)
3.5.2 The Cliche Plate
302(2)
3.5.3 The Pad
304(1)
3.5.4 Pad Printing Systems
305(1)
3.5.5 The Ink
306(1)
3.6 Screen Printing
307(12)
3.6.1 Screen
308(6)
3.6.2 The Squeegee and The Flowcoat
314(1)
3.6.3 The Ink
315(1)
3.6.4 The Press
316(2)
3.6.5 Closure
318(1)
3.7 Digital Printing
319(4)
3.7.1 Electrophotography
319(1)
3.7.2 Thermal Printing
319(1)
3.7.3 Inkjet Printing
320(2)
3.7.3.1 Continuous Inkjet Printing
320(1)
3.7.3.2 Drop-on-Demand Inkjet Printing
320(1)
3.7.3.3 Bubble Jet Printing
321(1)
3.7.5 Acknowledgments
322(1)
3.8 Soft Lithography
323(24)
3.8.1 Introduction
323(2)
3.8.2 Micro-Contact Printing
325(11)
3.8.2.1 SAM
326(4)
3.8.2.2 Tool Elements: Elastomer Stamp
330(1)
3.8.2.3 Low Modulus Stamp
331(1)
3.8.2.4 High Modulus Stamp
332(1)
3.8.2.5 Impurities
333(1)
3.8.2.6 Product Opportunities
334(1)
3.8.2.7 Manufacturability
335(1)
3.8.3 Micro-Molding
336(5)
3.8.3.1 Manufacturability
338(1)
3.8.3.2 Tool Elements: Elastomer Stamp
339(1)
3.8.3.3 Product Opportunities
340(1)
3.8.4 References
341(6)
Chapter 4 Electrical Behavior of Organic Transistors and Circuits 347(178)
4.1 Device Structures, Characterization and Modeling
347(76)
4.1.1 General Remarks
347(3)
4.1.2 Device Structures and Fabrication
350(6)
4.1.3 Device Characterization and Parameter Extraction
356(5)
4.1.3.1 Basic Device Operation
357(2)
4.1.3.2 Current-Voltage Relationship
359(2)
4.1.4 DC Measurements
361(11)
4.1.4.1 Transient Conductance Measurements
370(1)
4.1.4.2 Capacitance Measurements
371(1)
4.1.4.3 Thermally Stimulated Current and Luminescence Measurements
371(1)
4.1.5 Contact Resistance
372(19)
4.1.5.1 Contact Resistance Extraction
381(7)
4.1.5.2 Gate-Bias Dependent Field-Effect Mobility
388(3)
4.1.6 1/f Noise
391(5)
4.1.6.1 Extraction of 1/f Noise
391(1)
4.1.6.2 1/f Noise of Devices of Different Designs
392(4)
4.1.7 Bias-Temperature Stress of Pentacene Thin-Film Transistors
396(6)
4.1.7.1 Instabilities in Device Performance
397(5)
4.1.8 Device Models for Organic Thin-Film Transistors
402(10)
4.1.9 Concluding Remarks
412(1)
4.1.10 Section 4.1 References
413(10)
4.2 Organic Polymer Field-Effect Transistors
423(70)
4.2.1 Introduction
423(2)
4.2.2 Device Structures
425(4)
4.2.3 Device Operation Principles
429(11)
4.2.3.1 c-Si MOSFET Operation
429(5)
4.2.3.2 Inorganic TFT Operation
434(4)
4.2.3.3 OFET Operation
438(2)
4.2.4 Measurement of Device Electrical Characteristics
440(13)
4.2.4.1 Standardized Measurement Procedure
441(8)
4.2.4.2 Normalization of Device Electrical Characteristics
449(4)
4.2.5 Extraction of Basic Device Electrical Parameters
453(3)
4.2.5.1 Extraction Methods
453(3)
4.2.5.2 Normalization of Device Electrical Parameters
456(1)
4.2.6 Advanced Device Electrical Charaterization
456(22)
4.2.6.1 Source/Drain Contacts
456(8)
4.2.6.2 Channel Material and Device Field-Effect Mobility
464(10)
4.2.6.3 Gate Thin-Film Insulators
474(3)
4.2.6.4 Organic Semiconductor/Gate Insulator Interface
477(1)
4.2.7 Device Instabilities
478(11)
4.2.7.1 Electrical Instabilities
478(6)
4.2.7.2 Effect of Illumination on Device Electrical Characteristics
484(4)
4.2.7.3 Effect of Air on Device Electrical Characteristics
488(1)
4.2.8 Conclusion
489(1)
4.2.9 Acknowlegments
489(1)
4.2.10 Section 4.2 References
490(3)
4.3 Organic Transistor Complementary Circuits
493(32)
4.3.1 Materials
493(2)
4.3.2 Discrete Devices
495(3)
4.3.3 Circuit Design Considerations
498(1)
4.3.4 Circuit Results
499(12)
4.3.4.1 Inverters
500(1)
4.3.4.2 Ring Oscillator
501(3)
4.3.4.3 Latches and Registers
504(6)
4.3.4.4 Decoders
510(1)
4.3.5 Comparison of Complementary and p-Channel Organic Circuits
511(9)
4.3.6 Chemical Sensing with CMOS Circuits
520(1)
4.3.7 Conclusions
521(2)
4.3.8 Section 4.3 References
523(2)
Chapter 5 Applications 525(90)
5.1 Risks and Opportunities
525(5)
5.1.1 Why Applications in Polymer Electronics
525(1)
5.1.2 Market Drivers and Blockers
526(3)
5.1.2.1 Polymer versus Silicon
526(1)
5.1.2.2 Blockers
527(2)
5.1.3 Technological Challenges
529(1)
5.2 Technological Considerations
530(69)
5.2.1 Displays
530(39)
5.2.1.1 Liquid Crystal Displays
531(14)
5.2.1.2 Electrochromic Displays
545(6)
5.2.1.3 Microbead Displays
551(6)
5.2.1.4 Organic Light Emitting Diode Displays
557(12)
5.2.2 Circuits
569(30)
5.2.2.1 Integrated Circuits
569(11)
5.2.2.2 Memory
580(9)
5.2.2.3 RF Tag
589(10)
5.3 Commercial Aspects of Organic Electronic Applications
599(8)
5.3.1 Displays
600(3)
5.3.1.1 E-Paper
600(1)
5.3.1.2 E-Book
601(1)
5.3.1.3 E-Poster
601(2)
5.3.1.4 Smart Cards and Smart Label Displays
603(1)
5.3.1.5 Longer Term Display Opportunities
603(1)
5.3.2 Intelligent Products
603(2)
5.3.2.1 RFID Tags
604(1)
5.3.2.2 Smart Card Chips
605(1)
5.3.2.3 Memory
605(1)
5.3.3 Chemical and Biochemical Sensors
605(1)
5.3.4 The White Space
606(1)
5.4 Acknowledgement
607(1)
5.5 References
607(8)
Chapter 6 Molecular Electronics 615(54)
6.1 Introduction
615(4)
6.1.1 Moore's 1st and 2nd Laws "The End of Si CMOS?"
615(4)
6.1.2 Molecular Electronics/Nanotechnology: Dawn to a New Era?
6.2 Past 30 Years of Molecular Electronics/Nanotechnology
619(9)
6.2.1 1970's Single Molecule Device Idea
620(1)
6.2.2 1980's Single Molecule Detection
620(3)
6.2.2.1 Scanning Probe Microscopy
621(1)
6.2.2.2 Self-Assembled Monolayer
622(1)
6.2.3 1990's Molecular Manipulation
623(2)
6.2.3.1 SPM Directed Modification
624(1)
6.2.3.2 Substrate Modification
624(1)
6.2.3.3 Adsorbate Modification
625(1)
6.2.4 2000's Breakthroughs/Breakdowns
625(3)
6.3 Processing Technologies (Top-Down vs. Bottom- Up)
628(12)
6.3.1 Self-Organization
629(5)
6.3.1.1 Self-Assembly
629(2)
6.3.1.2 Self-Placement
631(3)
6.3.2 Directed-Organization
634(6)
6.3.2.1 Directed Assembly
635(1)
6.3.2.2 Directed Placement
636(4)
6.4 Performance
640(7)
6.4.1 Carbon Nanotube Based Devices
641(1)
6.4.2 Molecular Based Devices
642(5)
6.5 Issues/Challenges
647(3)
6.5.1 Rapid Screening
647(1)
6.5.2 Contacts
648(2)
6.5.3 Architecture
650(1)
6.6 Future Directions
650(5)
6.6.1 Dip-Pen Nanolithography
651(1)
6.6.2 Multi-Probe Development
652(1)
6.6.3 Orthogonal Assembly
653(2)
6.7 Summary
655(1)
6.8 Acknowledgement
655(1)
6.9 Chapter 6 References
655(14)
Contributing Authors 669(10)
Index 679

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program