Raymond A. Barnett, a native of California, received his B.A. in mathematical statistics from the University of California at Berkeley and his M.A. in mathematics from the University of Southern California. He has been a member of the Merritt College Mathematics Department, and was chairman of the department for four years. Raymond Barnett has authored or co-authored eighteen textbooks in mathematics, most of which are still in use. In addition to international English editions, a number of books have been translated into Spanish. Co-authors include Michael Ziegler, Marquette University; Thomas Kearns, Northern University; Charles Burke, City College of San Francisco; John Fuji, Merritt College; and Karl Byleen, Marquette University.
Michael R. Ziegler (late) received his B.S. from Shippensburg State College and his M.S. and Ph.D. from the University of Delaware. After completing post doctoral work at the University of Kentucky, he was appointed to the faculty of Marquette University where he held the rank of Professor in the Department of Mathematics, Statistics, and Computer Science. Dr. Ziegler published over a dozen research articles in complex analysis and co-authored eleven undergraduate mathematics textbooks with Raymond A. Barnett, and more recently, Karl E. Byleen.
Karl E. Byleen received his B.S., M.A. and Ph.D. degrees in mathematics from the University of Nebraska. He is currently an Associate Professor in the Department of Mathematics, Statistics and Computer Science of Marquette University. He has published a dozen research articles on the algebraic theory of semigroups.
Part One: A Library of Elementary Functions
Chapter 1: Linear Equations and Graphs
1-1 Linear Equations and Inequalities
1-2 Graphs and Lines
1-3 Linear Regression
1-4 Quadratic Functions
Chapter 1 Review
Review Exercise
Chapter 2: Functions and Graphs
2-1 Functions
2-2 Elementary Functions: Graphs and Transformations
2-3 Quadratic Functions
2-4 Polynomial and Rational Functions
2-5 Exponential Functions
2-6 Logarithmic Functions
Chapter 2 Review
Review Exercise
Part Two: Calculus
Chapter 3: Limits and the Derivative
3-1 Introduction to Limits
3-2 Infinite Limits and Limits at Infinity
3-3 Continuity
3-4 The Derivative
3-5 Basic Differentiation Properties
3-6 Differentials
3-7 Marginal Analysis in Business and Economics
Chapter 3 Review
Review Exercise
Chapter 4: Additional Derivative Topics
4-1 The Constant e and Continuous Compound Interest
4-2 Derivatives of Exponential and Logarithmic Functions
4-3 Derivatives of Products and Quotients
4-4 The Chain Rule
4-5 Implicit Differentiation
4-6 Related Rates
4-7 Elasticity of Demand
Chapter 4 Review
Review Exercise
Chapter 5: Graphing and Optimization
5-1 First Derivative and Graphs
5-2 Second Derivative and Graphs
5-3 L'Hopital's Rule
5-4 Curve Sketching Techniques
5-5 Absolute Maxima and Minima
5-6 Optimization
Chapter 5 Review
Review Exercise
Chapter 6: Integration
6-1 Antiderivatives and Indefinite Integrals
6-2 Integration by Substitution
6-3 Differential Equations; Growth and Decay
6-4 The Definite Integral
6-5 The Fundamental Theorem of Calculus
Chapter 6 Review
Review Exercise
Chapter 7: Additional Integration Topics
7-1 Area Between Curves
7-2 Applications in Business and Economics
7-3 Integration by Parts
7-4 Integration Using Tables
Chapter 7 Review
Review Exercise
Chapter 8: Multivariable Calculus
8-1 Functions of Several Variables
8-2 Partial Derivatives
8-3 Maxima and Minima
8-4 Maxima and Minima Using Lagrange Multipliers
8-5 Method of Least Squares
8-6 Double Integrals Over Rectangular Regions
8-7 Double Integrals Over More General Regions
Chapter 8 Review
Review Exercise
Chapter 9: Trigonometric Functions
9-1 Trigonometric Functions Review
9-2 Derivatives of Trigonometric Functions
9-3 Integration of Trigonometric Functions
Chapter 9 Review
Review Exercise
Appendixes
Appendix A: Basic Algebra Review
Self-Test on Basic Algebra
A-1 Algebra and Real Numbers
A-2 Operations on Polynomials
A-3 Factoring Polynomials
A-4 Operations on Rational Expressions
A-5 Integer Exponents and Scientific Notation
A-6 Rational Exponents and Radicals
A-7 Quadratic Equations
Appendix B: Special Topics
B-1 Sequences, Series, and Summation Notation
B-2 Arithmetic and Geometric Sequences
B-3 Binomial Theorem
Appendix C: Tables
Table I Basic Geometric Formulas
Table II Integration Formulas
Answers
Index
Applications Index
A Library of Elementary Functions