CART

(0) items

Civil and Environmental Systems Engineering,9780130478221
This item qualifies for
FREE SHIPPING!

FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Civil and Environmental Systems Engineering

by ; ;
Edition:
2nd
ISBN13:

9780130478221

ISBN10:
0130478229
Format:
Hardcover
Pub. Date:
8/15/2003
Publisher(s):
Prentice Hall
List Price: $212.19

Rent Textbook

(Recommended)
 
Term
Due
Price
$127.31

Buy New Textbook

Currently Available, Usually Ships in 24-48 Hours
N9780130478221
$206.89

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

More New and Used
from Private Sellers
Starting at $116.15
See Prices

Questions About This Book?

Why should I rent this book?
Renting is easy, fast, and cheap! Renting from eCampus.com can save you hundreds of dollars compared to the cost of new or used books each semester. At the end of the semester, simply ship the book back to us with a free UPS shipping label! No need to worry about selling it back.
How do rental returns work?
Returning books is as easy as possible. As your rental due date approaches, we will email you several courtesy reminders. When you are ready to return, you can print a free UPS shipping label from our website at any time. Then, just return the book to your UPS driver or any staffed UPS location. You can even use the same box we shipped it in!
What version or edition is this?
This is the 2nd edition with a publication date of 8/15/2003.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. You may receive a brand new copy, but typically, only the book itself.

Related Products


  • Civil and Environmental Systems Engineering
    Civil and Environmental Systems Engineering




Summary

Civil and Environmental Systems Engineering is designed for a junior- or senior-year course on systems analysis and economics as applied to civil engineering. This civil system/engineering economics course has evolved over roughly the last 30 years and draws on the fields of operations research and economics to create skills in problem solving. Because of the presence of several more advanced sections and sections focusing on applications in the book, it may also he useful as a text for first-year graduate courses that introduce students to civil systems. The second edition improves on an already classic book in its field by introducing new material and reorganizing portions of the previous edition. The new material is designed to enhance the student's learning experience by introducing modeling ideas and concepts at the outset, prior to teaching the mathematical process of model building. Network flow problems are given special treatment by highlighting their study separately from the general integer programming models that are considered. As well, the range of examples offered for the student's consideration is expanded not only as a motivational tool, but to illustrate the breadth of applications possible. A number of new end-of-chapter questions have been added to enhance the already well-received engineering economics chapters. REORGANIZED CHAPTERS bull; bull;Chapter 1: bull; bull;Now combines the historical development of systems analysis and the steps a model builder follows in structuring an optimization model. bull;Includes verbal descriptions of settings where models can be employed. The student is challenged to identify, in the context of these settings, not only constraints and appropriate decision variables, but also the needed parameters and problem objectives. bull;Chapter 2: Now consists of the general form of the linear programming problem and nine examples or stylized problems that are described in detail, as well as solved, to help introduce the student to the concept of optimization modeling. bull;Chapter 6; All the major network flows concepts have been drawn together into one chapter. bull;Chapter 7: The topics of integer programming, branch and bound, and the applications of integer programming are now contained in their chapter.

Author Biography

The team of authors, ReVelle, Whitlatch, and Wright, is well credentialed to provide a text that delivers both solid technical content and quality communication. ReVelle, a professor at Johns Hopkins for more than 30 years, studied with one of the originators of systems analysis in water management and teaches a course in civil systems regularly. ReVelle is also the author, with his wife Penelope, of The Environment, a basic college text that has appeared in three editions, and more recently of The Global Environment. Whitlatch, a professor in civil engineering at Ohio State, has been teaching a popular and well-received civil systems course for over 25 years. Wright, the Dean of Engineering at University of California, Merced, and the founding editor-in-chief of The Journal of Infrastructure Systems, has been teaching courses on civil systems and engineering economics for more than 20 years. The authors have collaborated on research for three decades. All three authors have distinguished records of research and application. They enjoyed writing the text together and will be interested in your comments.

Table of Contents

Explaining Systems Analysis
Models in Civil and Environmental Engineering
A Graphical Solution Procedure and Further Examples
The Simplex Algorithm for Solving Linear Programs
Linear Programs with Multiple Objectives
Linear Programming Models of Network Flow
Integer Programming and Its Applications
Scheduling Models: Critical Path Method
Decision Theory
Lessons in Context: Simulation and the Statistics of Prediction
Lessons in Context: A Multigoal Water Resources Problem Utilizing Multiple Techniques
Lessons in Context: Transportation Systems
Dynamic Programming and Nonlinear Programming
Engineering Economics I: Interest and Equivalence
Engineering Economics II: Choice Between Alternatives
Engineering Economics III: Depreciation, Taxes, Inflation, and Personal Financial Planning
Table of Contents provided by Publisher. All Rights Reserved.

Excerpts

ABOUT THE TEXTThis text is designed for a junior or senior year course on systems analysis, or systems analysis and economics, as applied to civil engineering. This civil system/engineering economics course has evolved over roughly the last 30 years and draws on the fields of operations research and economics to create skills in problem solving. Because of the presence in the book of several more advanced sections and sections focusing on applications, the book may also find use as a text for first-year graduate courses that introduce students to civil systems.As the field of operations research evolved from its origins during World War II, one area in particular grew in popularity. That area, known as mathematical programming, found wide application not only as a means to optimize the design of chemical and mechanical systems in industry but also as a means to find promising alternatives in civil and environmental engineering decision problems. Most popular among the computer-based optimization techniques has been and continues to be the method known as linear programming, a procedure that operates on one or more objectives subject to economic, resource, or logic constraints.Mathematical programming and linear programming, in particular, have found wide application in civil engineering problem solving. These techniques have been used in structural design, in highway alignment, in intersection light timing, in subway and rail route design, in traffic prediction, in terminal location, in the routing of collection vehicles, in the routing of hazardous wastes, in equipment selection, in landfill location, in the siting of transfer stations, in crew scheduling and allocation, in waste treatment plant design and location, in waste load allocations on a river, in the design of hydrologic models, in the selection of projects to bid on, in the design of water distribution systems and sewer systems, in cost sharing, in reservoir design and operation, in fire station siting, in ambulance deployment, and in many other civil and environmental engineering areas. The power of these tools to develop efficient alternatives is enormous. So many applications have been created that a number of journals have been established principally emphasizing civil systems optimization problems; these includeWater Resources Planning and Management, Transportation Science, Civil Engineering Systems, Water Resources Research,andThe Journal of Infrastructure Systems,among others.Our treatment of linear programming and other forms of optimization is pragmatic. We prove no theorems but do, however, provide a description of how and why linear programming works. If we did not, we would be handing the student a "black box" and telling the student to "believe." Instead of theory, we offer application in large quantities to motivate the student to learn the methodologies. We first offer problems that are not terribly difficult to formulate, and then problems that demand greater skill to put in solvable forms. Our thrust is to build up skills in an orderly fashion as there are greater and lesser challenges in formulation and greater and lesser challenges in solution method. Later chapters are, of course, the most demanding. These later chapters are a unique feature of this text. Titled "Lessons in Context" followed by the name of an application field, these chapters offer new techniques within the framework of a problem setting, a problem setting that demands the new methodologies that are then introduced. Our experience suggests that the "need" for the methodologies helps to motivate students to learn them.A second focus of this book, in addition to linear programming and associated tools of optimization, is the closely allied field of engineering economics. At first glance, our treatment of engineering economics would appear to be guided by the need to cover all topics necessary to prepare undergraduate engineers


Please wait while the item is added to your cart...