CART

(0) items

College Physics Volume 1,9780077263126
This item qualifies for
FREE SHIPPING!

FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

College Physics Volume 1

by ; ;
Edition:
3rd
ISBN13:

9780077263126

ISBN10:
007726312X
Format:
Paperback
Pub. Date:
1/14/2009
Publisher(s):
McGraw-Hill Science/Engineering/Math
Includes 2-weeks free access to
step-by-step solutions for this book.
Step-by-Step solutions are actual worked out problems to the questions at the end of each chapter that help you understand your homework and study for your exams. Chegg and eCampus are providing you two weeks absolutely free. 81% of students said using Step-by-Step solutions prepared them for their exams.
List Price: $151.20

Buy New Textbook

Usually Ships in 3-4 Business Days
N9780077263126
$147.42

Rent Textbook

We're Sorry
Sold Out

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

More New and Used
from Private Sellers
Starting at $9.75
See Prices

Questions About This Book?

What version or edition is this?
This is the 3rd edition with a publication date of 1/14/2009.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.

Related Products


  • College Physics : Volume One
    College Physics : Volume One
  • College Physics Volume 1
    College Physics Volume 1




Summary

College Physics, Third Edition is the best solution for today's college physics market. With a unique, new, approach to physics that builds a conceptual framework as motivation for the physical principles, consistent problem solving coverage strategies, stunning art, extensive end-of-chapter material, and superior media support, Giambattista, Richardson, and Richardson delivers a product that addresses today's market needs with the best tools available.

Table of Contents

Introduction
Why study physics?
Talking physics
The use of mathematics
Scientific notation and significant figures
Units
Dimensional analysis
Problem-solving techniques
Approximation
Graphs
Mechanics
Force
Force
Net force
Inertia and Equlibrium: Newton''s first law of motion
Vector addition using components
Interaction pairs: Newton’s third law of motion
Gravitational forces
Contact forces
Tension
Fundamental forces
Acceleration and Newton’s Second Law of Motion
Position and displacement
Velocity
Newton’s second law of motion
Applying Newton’s second law
Velocity is relative: reference frames
Motion with a Changing Velocity
Motion along a line due to a constant net force
Visualizing motion along a line with constant acceleration
Free fall
Motion of projectiles
Apparent weight
Air resistance
Circular Motion
Description of uniform circular motion
Centripetal acceleration
Banked curves
Circular orbits
Nonuniform circular motion
Angular acceleration
Artificial gravity
Conservation of Energy
The law of conservation of energy
Work done by a constant force
Kinetic energy
Gravitational potential energy (1)
Gravitational potential energy (2)
Work done by variable forces: Hooke’s Law
Elastic potential energy
Power
Linear Momentum
A vector conservation law
Momentum
The impulse-momentum theorem
Conservation of momentum
Center of mass
Motion of the center of mass
Collisions in one dimension
Collisions in two dimensions
Torque and Angular Momentum
Rotational kinetic energy and rotational inertia
Torque
Work done by a torque
Equilibrium revisited
Equilibrium in the human body
Rotational form of Newton’s second law
The dynamics of rolling objects
Angular momentum
The vector nature of angular momentum
Fluids
States of matter
Pressure
Pascal''s principle
The effect of gravity on fluid pressure
Measuring pressure
Archimedes'' principle
Fluid flow
Bernoulli''s equation
Viscosity
Viscous drag
Surface tension
Elasticity and Oscillations
Elastic deformations of solids
Hooke''s law for tensile and compressive forces
Beyond Hooke''s law
Shear and volume deformations
Simple harmonic motion
The period and frequency for SHM
Graphical analysis of SHM
The pendulum
Damped oscillations
Forced oscillations and resonance
Waves
Waves and energy transport
Transverse and longitudinal waves
Speed of transverse waves on a string
Periodic waves
Mathematical description of a wave
Graphing waves
Principle of superposition
Reflection and refraction
Interference and diffraction
Standing waves
Sound
Sound waves
The speed of sound waves
Amplitude and intensity of sound waves
Standing sound waves
The human ear
Timbre
Beats
The Doppler effect
Shock waves
Echolocation and medical imaging
Thermal Physics
Temperature and the Ideal Gas
Temperature
Temperature scales
Thermal expansion of solids and liquids
Molecular picture of a gas
Absolute temperature and the ideal gas law
Kinetic theory of the ideal gas
Temperature and reaction rates
Collisions between gas molecules
Heat
Internal energy
Heat
Heat capacity and specific heat
Specific heat of ideal gases
Phase transitions
Conduction
Convection
Radiation
Thermodynamics
The first law of thermodynamics
Thermodynamic processes
Thermodynamic processes for an ideal gas
Reversible and irreversible processes
Heat engines
Refrigerators and heat pumps
Reversible engines and heat pumps
Details of the Carnot cycle
Entropy
Statistical interpretation of entropy
The third law of thermodynamics
Electromagnetism
Electric Forces and Fields
Electric charge
Conductors and insulators
Coulomb’s law
The electric field
Motion of a point charge in a uniform electric field
Conductors in electrostatic equilibrium
Gauss''s law for electric fields
Electric Potential
Electric potential energy
Electric potential
The relationship between electric field and potential
Conservation of energy for moving charges
Capacitors
Dielectrics
Energy stored in a capacitor
Electric Current and Circuits
Electric current
Emf and circuits
Microscopic view of current in a metal
Resistance and resistivity
Kirchoff’s rules
Series and parallel circuits
Circuit analysis using Kirchoff’s rules
Power and energy in circuits
Measuring currents and voltages
RC circuits
Electrical safety
Magnetic Forces and Fields
Magnetic fields
Magnetic force on a point charge
Charged particle moving perpendicular to a uniform magnetic field
Motion of a charged particle in a uniform magnetic field: general
A charged particle in crossed E and B fields
Magnetic force on a current-carrying wire
Torque on a current loop
Magnetic field due to an electric current
Ampère’s law
Magnetic materials
Electromagnetic Induction
Motional Emf
Electric generators
Faraday''s law
Lenz''s law
Back Emf in a motor
Transformers
Eddy currents
Induced electric fields
Mutual and self-inductance
LR circuits
Alternating Current
Sinusoidal currents and voltages; resistors in AC circuits
Electricity in the home
Capacitors in AC circuits
Inductors in AC circuits
RLC series circuit
Resonance in an RLC circuit
Converting AC to DC; filters
Electromagnetic Waves And Optics
Electromagnetic Waves
Accelerating charges produce electromagnetic waves
Maxwell’s equations
Antennas
The electromagnetic spectrum
Speed of EM waves in vacuum and in matter
Characteristics of electromagnetic waves in vacuum
Energy transport by EM waves
Polarization
The Doppler effect for EM waves
Reflection and Refraction of Light
Wavefronts, rays, and Huygens’ principle
The reflection of light
The refraction of light: Snell’s law
Total internal reflection
Brewster’s angle
The formation of images through reflection or refraction
Plane mirrors
Spherical mirrors
Thin lenses
Optical Instruments
Lenses in combination
Cameras 24
Table of Contents provided by Publisher. All Rights Reserved.


Please wait while the item is added to your cart...