CART

(0) items

Companion to Quantum Computation and Communication,9783527408481
This item qualifies for
FREE SHIPPING!

FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Companion to Quantum Computation and Communication

by
Edition:
1st
ISBN13:

9783527408481

ISBN10:
3527408487
Format:
Paperback
Pub. Date:
5/28/2013
Publisher(s):
Wiley-VCH
List Price: $149.33

Rent Textbook

(Recommended)
 
Term
Due
Price
$134.40

Buy New Textbook

Currently Available, Usually Ships in 24-48 Hours
N9783527408481
$145.60

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

More New and Used
from Private Sellers
Starting at $127.09
See Prices

Questions About This Book?

Why should I rent this book?
Renting is easy, fast, and cheap! Renting from eCampus.com can save you hundreds of dollars compared to the cost of new or used books each semester. At the end of the semester, simply ship the book back to us with a free UPS shipping label! No need to worry about selling it back.
How do rental returns work?
Returning books is as easy as possible. As your rental due date approaches, we will email you several courtesy reminders. When you are ready to return, you can print a free UPS shipping label from our website at any time. Then, just return the book to your UPS driver or any staffed UPS location. You can even use the same box we shipped it in!
What version or edition is this?
This is the 1st edition with a publication date of 5/28/2013.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. You may receive a brand new copy, but typically, only the book itself.

Summary

This is a timely, self-contained introduction to the rapidly expanding field of quantum information and computation that avoids detailed mathematical proofs wherever possible. The author uses a mixed exposition between a popular and technical approach, connecting the standard results of the field with more recent developments. A complete but not highly technical textbook for students of physics, mathematics, and computer science.

Author Biography

Mladen Pavicic is a physics professor at the University of Zagreb, Croatia, where he also holds the physics chair at the Faculty of Civil Engineering. After taking his Ph.D. degree in Belgrade in 1986, he stayed at various universities in Germany (Humboldt University, Berlin, Technical University, Berlin, University of Cologne) and the United States (University of Maryland, Baltimore) as a visiting professor. Professor Pavicic has published over 100 articles and several books. He has received the Alexander von Humboltd Research Award several times.

Table of Contents

1 Making Computation Faster and Communication Secure: Quantum Solution
1.1 Turing Machine: a Real Machine or . . .
1.2 . . . a Mathematical Procedure
1.3 Faster SuperTuring Computation
1.4 Digital Computers Do not Run on Logic
1.5 Speeding up Computation: Classical Analog Computation . . .
1.6 . . . versus Quantum Physical Computation
1.7 Complexity Limits: Exponential Time
1.8 Energy Limits . . .
1.9 . . . and Reversible Gates
1.10 Ultimate Efficiency: Quantum Computers and Qubits
1.11 Combining andMeasuringQubits: QuantumSuperposition?Qubit Primer
1.15 Generating Qubits: Sources of Photons?Polarization Primer
1.16 Correlating Unpolarized Qubits: Quantum Entanglement
1.17 Separating and Transforming Entanglements: Bell States at a Beam Splitter
1.18 Manipulating and Verifying Entanglements: Superdense Coding
1.19 Copying Qubits? No. Teleporting Qubits!
1.20 Unperformed Measurements Have no Values: KochenSpecker Sets
1.21 Controlling Qubits: Quantum Gates and Circuits
1.22 Self-Sustaining Qubits: Quantum Error Correction
1.23 Flying Qubits Connecting Quantum Chips and Computers: Quantum Repeaters
1.24 Why Classical Cryptography Cannot Keep Secrets for Long . . .
1.25 . . . and why Quantum Cryptography Can?
1.25.1 Entanglement in Action: Deterministic Communication
1.25.2 NoCloning in Action: Probabilistic BB84 Protocol
1.26 WhyThereCanBe noQuantumEavesdroppers? Unconditional Security

2 Quantum Computation and Communication Hardware
2.1 Technological Candidates for Quantum Computation Implementation
2.2 All-Optical Scalable Quantum Computation
2.2.1 Probabilistic Parity Check Gate with a Quantum Encoder
2.2.2 Destructive CNOT Gate
2.2.3 Nondestructive Probabilistic Full CNOT Gate
2.2.4 The Teleportation Trick
2.2.5 Scalable Computation
2.3 Trapped Ions
2.4 Nuclear Magnetic Resonance
2.5 SiliconBased Nuclear Spins?Kane?s Computer
2.6 Quantum Dots
2.6.1 EnergyLevel Design;
Quantum Dots in a Microcavity
2.6.2 Atom-Cavity Interaction between Levels |0> and |1>
2.6.3 Laser-Atom Interaction between |0> and |1>
2.6.4 Atom-Cavity and Laser-Atom Interactions between |0> and |2>
2.6.5 Implementation of a CNOT gate
2.6.6 Reading out the Results;
Perspectives
2.6.7 Spinlevel design; array of coupled quantum dots
2.7 Superconducting Devices
2.7.1 Josephson Junction
2.7.2 Josephson Junction Circuit and Hamiltonian
2.7.3 Josephson Junction Cooper-Pair Box
2.7.4 Superconducting Quantum Interference Device?SQUID
2.7.5 Cooper Pairs
2.7.6 Quantum Gates for Single Qubits
2.7.7 Quantum Gates for Two Qubits?CNOT Gate
2.7.8 Reading out the results

3 Melting Theory with Implementation
3.1 Quantum Network
3.1.1 One-Atom Laser and Atom-Cavity Coupling
3.1.2 Single Photons on Demand
3.1.3 Dark States
3.1.4 Quantum Repeaters Revisited
3.2 Quantum-Classical Coupling: Interaction-Free Computation
3.3 Quantum Algorithms: Quantum or Classical Problems?
3.3.1 Are there Universal Quantum Algorithms?
3.3.2 Quantum Coin?Deutsch?s Algorithm
3.3.3 Deutsch-Jozsa and Bernstein-Vazirani Algorithms
3.3.4 Shor?s Algorithm
3.3.5 Quantum Simulators
4 Beyond Standard Qubit Computation
4.1 Persistent Entanglement
4.2 One-Way Computing and Cluster States
4.2.1 Dumping Reversibility and Unitarity?
4.2.2 Irreversible Measurement Setup
4.2.3 Reversibility and Unitarity Revisited
4.3 Continuous Variables
4.3.1 Continuous Entanglement
4.3.2 Second-Order (One-Photon) vs. Fourth-Order (Two-Photon) Interference
4.3.3 Qubits with Continuous Spatial Degree of Freedom
4.3.4 Universal Quantum Computation with Continuous-Variable Cluster States
5 Epilogue?Hybrid Systems


Please wait while the item is added to your cart...