CART

(0) items

Discrete Stochastic Processes and Optimal Filtering,9781118600351
This item qualifies for
FREE SHIPPING!

FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Discrete Stochastic Processes and Optimal Filtering

by ;
Edition:
2nd
ISBN13:

9781118600351

ISBN10:
1118600355
Format:
eBook
Pub. Date:
1/15/2013
Publisher(s):
Wiley-ISTE
List Price: $140.80

Rent Textbook

(Recommended)
 
Term
Due
Price
$126.72

Buy New Textbook

Currently Available, Usually Ships in 24-48 Hours
N9781118600351
$137.28

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

Questions About This Book?

Why should I rent this book?
Renting is easy, fast, and cheap! Renting from eCampus.com can save you hundreds of dollars compared to the cost of new or used books each semester. At the end of the semester, simply ship the book back to us with a free UPS shipping label! No need to worry about selling it back.
How do rental returns work?
Returning books is as easy as possible. As your rental due date approaches, we will email you several courtesy reminders. When you are ready to return, you can print a free UPS shipping label from our website at any time. Then, just return the book to your UPS driver or any staffed UPS location. You can even use the same box we shipped it in!
What version or edition is this?
This is the 2nd edition with a publication date of 1/15/2013.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. You may receive a brand new copy, but typically, only the book itself.

Summary

Optimal filtering applied to stationary and non-stationary signals provides the most efficient means of dealing with problems arising from the extraction of noise signals. Moreover, it is a fundamental feature in a range of applications, such as in navigation in aerospace and aeronautics, filter processing in the telecommunications industry, etc. This book provides a comprehensive overview of this area, discussing random and Gaussian vectors, outlining the results necessary for the creation of Wiener and adaptive filters used for stationary signals, as well as examining Kalman filters which are used in relation to non-stationary signals. Exercises with solutions feature in each chapter to demonstrate the practical application of these ideas using MATLAB.


Please wait while the item is added to your cart...