CART

(0) items

Fundamentals of Engineering Thermodynamics, 7th Edition,9780470495902
This item qualifies for
FREE SHIPPING!

FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Fundamentals of Engineering Thermodynamics, 7th Edition

by ; ; ;
Edition:
7th
ISBN13:

9780470495902

ISBN10:
0470495901
Format:
Hardcover
Pub. Date:
12/1/2010
Publisher(s):
Wiley
List Price: $281.20

Buy Used Textbook

(Recommended)
Usually Ships in 2-3 Business Days
U9780470495902
$196.84

Buy New Textbook

Currently Available, Usually Ships in 24-48 Hours
N9780470495902
$274.17

eTextbook


 
Duration
Price
$77.22

Rent Textbook

We're Sorry
Sold Out

More New and Used
from Private Sellers
Starting at $18.50
See Prices

Questions About This Book?

What version or edition is this?
This is the 7th edition with a publication date of 12/1/2010.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Used copy of this book is not guaranteed to inclue any supplemental materials. Typically, only the book itself is included.

Related Products


  • Fundamentals of Engineering Thermodynamics, 8/E
    Fundamentals of Engineering Thermodynamics, 8/E





Customer Reviews

Fast Shipping And Good Condition Book  March 30, 2011
by


I Was given an estimated range for when it would come and it came the first day of that range. Very quick. Brand new condition as stated, i recommend ecampus for anyone wants to get his materials and books online because i can assure they did great to me :)






Fundamentals of Engineering Thermodynamics, 7th Edition: 5 out of 5 stars based on 1 user reviews.

Summary

Fundamentals of Engineering Thermodynamics maintains its engaging, readable style while presenting a broader range of applications that motivate engineers to learn the core thermodynamics concepts. Two new coauthors help update the material and integrate engaging, new problems.

This leading text uses many relevant engineering-based situations to help students model and solve problems.

Throughout the chapters, they focus on the relevance of thermodynamics to modern engineering problems. Many relevant engineering based situations are also presented to help engineers model and solve these problems.

Table of Contents

1 Getting Started: Introductory Concepts and Definitions.

1.1 Using Thermodynamics.

1.2 Defi ning Systems.

1.3 Describing Systems and Their Behavior.

1.4 Measuring Mass, Length, Time, and Force.

1.5 Specifi c Volume.

1.6 Pressure.

1.7 Temperature.

1.8 Engineering Design and Analysis.

1.9 Methodology for Solving Thermodynamics Problems.

Chapter Summary and Study Guide.

2 Energy and the First Law of Thermodynamics.

2.1 Reviewing Mechanical Concepts of Energy.

2.2 Broadening Our Understanding of Work.

2.3 Broadening Our Understanding of Energy.

2.4 Energy Transfer by Heat.

2.5 Energy Accounting: Energy Balance for Closed Systems.

2.6 Energy Analysis of Cycles.

2.7 Energy Storage.

Chapter Summary and Study Guide.

3 Evaluating Properties.

3.1 Getting Started.

3.2 p–y–T Relation.

3.3 Studying Phase Change.

3.4 Retrieving Thermodynamic Properties.

3.5 Evaluating Pressure, Specifi c Volume, and Temperature.

3.6 Evaluating Specifi c Internal Energy and Enthalpy.

3.7 Evaluating Properties Using Computer Software.

3.8 Applying the Energy Balance Using Property Tables and Software.

3.9 Introducing Specifi c Heats cy and cp.

3.10 Evaluating Properties of Liquids and Solids.

3.11 Generalized Compressibility Chart.

3.12 Introducing the Ideal Gas Model.

3.13 Internal Energy, Enthalpy, and Specific Heats of Ideal Gases.

3.14 Applying the Energy Balance Using Ideal Gas Tables, Constant Specifi c Heats, and Software.

3.15 Polytropic Process Relations.

Chapter Summary and Study Guide.

4 Control Volume Analysis Using Energy.

4.1 Conservation of Mass for a Control Volume.

4.2 Forms of the Mass Rate Balance.

4.3 Applications of the Mass Rate Balance.

4.4 Conservation of Energy for a Control Volume.

4.5 Analyzing Control Volumes at Steady State.

4.6 Nozzles and Diffusers.

4.7 Turbines.

4.8 Compressors and Pumps.

4.9 Heat Exchangers.

4.10 Throttling Devices.

4.11 System Integration.

4.12 Transient Analysis.

Chapter Summary and Study Guide.

5 The Second Law of Thermodynamics.

5.1 Introducing the Second Law.

5.2 Statements of the Second Law.

5.3 Irreversible and Reversible Processes.

5.4 Interpreting the Kelvin–Planck Statement.

5.5 Applying the Second Law to Thermodynamic Cycles.

5.6 Second Law Aspects of Power Cycles Interacting with Two Reservoirs.

5.7 Second Law Aspects of Refrigeration and Heat Pump Cycles Interacting with Two Reservoirs.

5.8 The Kelvin and International Temperature Scales.

5.9 Maximum Performance Measures for Cycles Operating Between Two Reservoirs.

5.10 Carnot Cycle.

5.11 Clausius Inequality.

Chapter Summary and Study Guide.

6 Using Entropy.

6.1 Entropy–A System Property.

6.2 Retrieving Entropy Data.

6.3 Introducing the T dS Equations.

6.4 Entropy Change of an Incompressible Substance.

6.5 Entropy Change of an Ideal Gas.

6.6 Entropy Change in Internally Reversible Processes of Closed Systems.

6.7 Entropy Balance for Closed Systems.

6.8 Directionality of Processes.

6.9 Entropy Rate Balance for Control Volumes.

6.10 Rate Balances for Control Volumes at Steady State.

6.11 Isentropic Processes.

6.12 Isentropic Effi ciencies of Turbines, Nozzles, Compressors, and Pumps.

6.13 Heat Transfer and Work in Internally Reversible, Steady-State Flow Processes.

Chapter Summary and Study Guide.

7 Exergy Analysis.

7.1 Introducing Exergy.

7.2 Conceptualizing Exergy.

7.3 Exergy of a System.

7.4 Closed System Exergy Balance.

7.5 Exergy Rate Balance for Control Volumes at Steady State.

7.6 Exergetic (Second Law) Efficiency.

7.7 Thermoeconomics.

Chapter Summary and Study Guide.

8 Vapor Power Systems.

Introducing Power Generation.

Considering Vapor Power Systems.

8.1 Introducing Vapor Power Plants.

8.2 The Rankine Cycle.

8.3 Improving Performance—Superheat, Reheat, and Supercritical.

8.4 Improving Performance— Regenerative Vapor Power Cycle.

8.5 Other Vapor Power Cycle Aspects.

8.6 Case Study: Exergy Accounting of a Vapor Power Plant.

Chapter Summary and Study Guide.

9 Gas Power Systems.

Considering Internal Combustion Engines.

9.1 Introducing Engine Terminology.

9.2 Air-Standard Otto Cycle.

9.3 Air-Standard Diesel Cycle.

9.4 Air-Standard Dual Cycle.

Considering Gas Turbine Power Plants.

9.5 Modeling Gas Turbine Power Plants.

9.6 Air-Standard Brayton Cycle.

9.7 Regenerative Gas Turbines.

9.8 Regenerative Gas Turbines with Reheat and Intercooling.

9.9 Gas Turbine–Based Combined Cycles.

9.10 Integrated Gasifi cation Combined-Cycle Power Plants.

9.11 Gas Turbines for Aircraft Propulsion.

9.12 Compressible Flow Preliminaries.

9.13 Analyzing One-Dimensional Steady Flow in Nozzles and Diffusers.

9.14 Flow in Nozzles and Diffusers of Ideal Gases with Constant Specific Heats.

Chapter Summary and Study Guide.

10 Refrigeration and Heat Pump Systems.

10.1 Vapor Refrigeration Systems.

10.2 Analyzing Vapor-Compression Refrigeration Systems.

10.3 Selecting Refrigerants.

10.4 Other Vapor-Compression Applications.

10.5 Absorption Refrigeration.

10.6 Heat Pump Systems.

10.7 Gas Refrigeration Systems.

Chapter Summary and Study Guide.

11 Thermodynamic Relations.

11.1 Using Equations of State.

11.2 Important Mathematical Relations.

11.3 Developing Property Relations.

11.4 Evaluating Changes in Entropy, Internal Energy, and Enthalpy.

11.5 Other Thermodynamic Relations.

11.6 Constructing Tables of Thermodynamic Properties.

11.7 Generalized Charts for Enthalpy and Entropy.

11.8 p–y–T Relations for Gas Mixtures.

11.9 Analyzing Multicomponent Systems.

Chapter Summary and Study Guide.

12 Ideal Gas Mixture and Psychrometric Applications.

Ideal Gas Mixtures: General Considerations.

12.1 Describing Mixture Composition.

12.2 Relating p, V, and T for Ideal Gas Mixtures.

12.3 Evaluating U, H, S, and Specific Heats.

12.4 Analyzing Systems Involving Mixtures.

12.5 Introducing Psychrometric Principles.

12.6 Psychrometers: Measuring the Wet-Bulb and Dry-Bulb Temperatures.

12.7 Psychrometric Charts.

12.8 Analyzing Air-Conditioning Processes.

12.9 Cooling Towers.

Chapter Summary and Study Guide.

13 Reacting Mixtures and Combustion.

Combustion Fundamentals.

13.1 Introducing Combustion.

13.2 Conservation of Energy— Reacting Systems.

13.3 Determining the Adiabatic Flame Temperature.

13.4 Fuel Cells.

13.5 Absolute Entropy and the Third Law of Thermodynamics.

13.6 Conceptualizing Chemical Exergy.

13.7 Standard Chemical Exergy.

13.8 Applying Total Exergy.

Chapter Summary and Study Guide.

14 Chemical and Phase Equilibrium.

Equilibrium Fundamentals.

14.1 Introducing Equilibrium Criteria.

14.2 Equation of Reaction Equilibrium.

14.2.1 Introductory Case 853

14.2.2 General Case 854

14.3 Calculating Equilibrium Compositions 855

14.4 Further Examples of the Use of the Equilibrium Constant.

14.5 Equilibrium between Two Phases of a Pure Substance.

14.6 Equilibrium of Multicomponent, Multiphase Systems.

Appendix Tables, Figures, and Charts.

Index to Tables in SI Units.

Index to Tables in English Units.

Index to Figures and Charts.

Index.

Answers to Selected Problems: Visit the student companion site at www.wiley.com/college/moran.



Please wait while the item is added to your cart...