CART

(0) items

Graphene and Carbon Nanotubes Ultrafast Optics and Relaxation Dynamics,9783527411610
This item qualifies for
FREE SHIPPING!

FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Graphene and Carbon Nanotubes Ultrafast Optics and Relaxation Dynamics

by ;
Edition:
1st
ISBN13:

9783527411610

ISBN10:
3527411615
Format:
Hardcover
Pub. Date:
5/28/2013
Publisher(s):
Wiley-VCH
List Price: $117.33

Rent Textbook

(Recommended)
 
Term
Due
Price
$82.13

Buy New Textbook

Currently Available, Usually Ships in 24-48 Hours
$114.40

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

More New and Used
from Private Sellers
Starting at $106.32

Questions About This Book?

Why should I rent this book?
Renting is easy, fast, and cheap! Renting from eCampus.com can save you hundreds of dollars compared to the cost of new or used books each semester. At the end of the semester, simply ship the book back to us with a free UPS shipping label! No need to worry about selling it back.
How do rental returns work?
Returning books is as easy as possible. As your rental due date approaches, we will email you several courtesy reminders. When you are ready to return, you can print a free UPS shipping label from our website at any time. Then, just return the book to your UPS driver or any staffed UPS location. You can even use the same box we shipped it in!
What version or edition is this?
This is the 1st edition with a publication date of 5/28/2013.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. You may receive a brand new copy, but typically, only the book itself.

Summary

A first on ultrafast phenomena in carbon nanostructures like graphene, the most promising candidate for revolutionizing information technology and communication

The book introduces the reader into the ultrafast nanoworld of graphene and carbon nanotubes, including their microscopic tracks and unique optical finger prints. The author reviews the recent progress in this field by combining theoretical and experimental achievements. He offers a clear theoretical foundation by presenting transparently derived equations. Recent experimental breakthroughs are reviewed.

By combining both theory and experiment as well as main results and detailed theoretical derivations, the book turns into an inevitable source for a wider audience from graduate students to researchers in physics, materials science, and electrical engineering who work on optoelectronic devices, renewable energies, or in the semiconductor industry.

Author Biography

Ermin Malic graduated in Physics from Technical University (TU) Berlin. During his PhD thesis, he was a visiting researcher at the MIT and the University of Modena, Italy. From 2003 to 2008, he was a fellow of the Studienstiftung des Deutschen Volkes and the Friedrich-Ebert Stiftung. He received the DAAD and the Chorofas award for outstanding scientific research. After a post-doctoral stay at CIN2 in Barcelona, he is now leading the Einstein Junior Research Group on Microscopic Study of Carbon-based Hybrid Nanostructures at TU Berlin.

Professor Andreas Knorr works in the field of nonlinear optics and quantum electronics of nanostructured solids.
His research is focused on the interaction of light and matter, self-consistent solutions of Maxwell- and material equations and many body effects in open quantum systems. Since 2000 Andreas Knorr has a professorship at the Technical University of Berlin. His scientific career, which started at the Friedrich-Schiller-University Jena led him to the Universities of New Mexico, Arizona (College of Optical Sciences), Marburg, Göttingen and to Sandia National Labs Albuquerque and NTT Tokio.

Table of Contents

1 Introduction -
The carbon age

2 Theoretical framework
2.1 Many-particle Hamilton operator
2.2 Microscopic Bloch equations
2.3 Electronic band structure of graphene
2.4 Electronic band structure of carbon nanotubes
2.5 Optical matrix element
2.6 Coulomb matrix elements
2.7 Electron-phonon matrix elements
2.8 Macroscopic observables

3 Experimental techniques to ultrafast non-equilibrium carrier dynamics in graphene *** guest article by Stephan Winnerl ***
3.1 The principle of pump-probe experiments
3.2 Characteristics of short radiation pulses
3.3 Sources of short infrared and terahertz radiation pulses
3.4 Single-color and two-color pump-probe experiments on graphene

Part I Electronic properties -
Carrier relaxation dynamics

4 Relaxation dynamics in graphene
4.1 Experimental studies
4.2 Relaxation channels in graphene
4.3 Optically induced non-equilibrium carrier distribution
4.4 Carrier dynamics
4.5 Phonon dynamics
4.6 Pump fluence dependence
4.7 Influence of the substrate
4.8 Auger-induced carrier multiplication
4.9 Optical gain
4.10 Relaxation dynamics near the Dirac point

5 Carrier dynamics in carbon nanotubes
5.1 Experimental studies
5.2 Phonon-induced relaxation dynamics
5.3 Coulomb-induced quantum-kinetic carrier dynamics

Part II Optical properties -
Absorption spectra

6 Absorption spectra of carbon nanotubes
6.1 Experimental studies
6.2 Absorption of semiconducting carbon nanotubes
6.3 Absorption of metallic carbon nanotubes
6.4 Absorption of functionalized carbon nanotubes

7 Absorption spectrum of graphene
7.1 Experimental studies
7.2 Absorbance and conductivity in graphene

A A guideline for the appendices
A.1 Microscopic processes in carbon nanostructures
A.2 Outline of the theoretical description
B Observables in optical experiments
C Second quantization
D Equations of motion
E Mean-field and correlation effects
F Index


Please wait while the item is added to your cart...