9780582310803

Inorganic Chemistry

by ;
  • ISBN13:

    9780582310803

  • ISBN10:

    0582310806

  • Edition: 1st
  • Format: Paperback
  • Copyright: 2001-01-01
  • Publisher: Prentice Hall
  • View Upgraded Edition
  • Purchase Benefits
  • Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $111.33 Save up to $3.34
  • Buy New
    $107.99
    Add to Cart Free Shipping

    CURRENTLY AVAILABLE, USUALLY SHIPS IN 24-48 HOURS

Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

Summary

This new title from Catherine Housecroft and Alan Sharpe offers a fresh and exciting approach to teaching modern inorganic chemistry. Inorganic Chemistry 1e gives a clear introduction to key principles with strong coverage of descriptive chemistry of the elements. Special selected topics chapters are included covering kinetics and mechanism, catalysis, solid state chemistry and bioinorganic chemistry. The attractive two-colour text and three-dimensional illustrations bring inorganic chemistry to life, with over 140 topic boxes, many covering applications of inorganic chemicals in industry, day-to-day life and the laboratory, and environmental and biological resources.

Author Biography

Catherine E. Housecroft is Professor of Inorganic Chemistry at the University of Birmingham, UK, Executive Editor of Polyhedron, a former Associate Editor of Coordination Chemistry Reviews.

Table of Contents

Preface xxxi
Some basic concepts
1(49)
Introduction
1(1)
Inorganic chemistry: it is not an isolated branch of chemistry
1(1)
The aims of Chapter 1
1(1)
Fundamental particles of an atom
1(1)
Atomic number, mass number and isotopes
2(1)
Nuclides, atomic number and mass number
2(1)
Relative atomic mass
2(1)
Isotopes
2(1)
Successes in early quantum theory
3(3)
Some important successes of classical quantum theory
4(1)
Bohr's theory of the atomic spectrum of hydrogen
5(1)
An introduction to wave mechanics
6(1)
The wave-nature of electrons
6(1)
The uncertainty principle
6(1)
The Schrodinger wave equation
6(1)
Atomic orbitals
7(8)
The quantum numbers n, l and ml
7(3)
The radial part of the wavefunction, R(r)
10(1)
The radial distribution function, 4πr2 R(r)2
11(1)
The angular part of the wavefunction, A(&thetas;,&phis;)
11(2)
Orbital energies in a hydrogen-like species
13(1)
Size of orbitals
14(1)
The spin quantum number and the magnetic spin quantum number
14(1)
The ground state of the hydrogen atom
14(1)
Many-electron atoms
15(3)
The helium atom: two electrons
15(1)
Ground state electronic configurations: experimental data
16(1)
Penetration and shielding
16(2)
The periodic table
18(1)
The aufbau principle
18(4)
Ground state electronic configurations
18(3)
Valence and core electrons
21(1)
Diagrammatic representations of electronic configurations
22(1)
Ionization energies and electron affinities
22(3)
Ionization energies
22(2)
Eleotron affinities
24(1)
Bonding models: an introduction
25(1)
A historical overview
25(1)
Lewis structures
25(1)
Homonuclear diatomic molecules: valence bond (VB) theory
25(3)
Uses of the term homonuclear
25(1)
Covalent bond distance, covalent radius and van der Waals radius
26(1)
The valence bond (VB) model of bonding in H2
26(1)
The valence bond (VB) model applied to F2, O2 and N2
27(1)
Homonuclear diatomic molecules: molecular orbital (MO) theory
28(6)
An overview of the MO model
28(1)
Molecular orbital theory applied to the bonding in H2
28(2)
The bonding in He2, Li2 and Be2
30(1)
The bonding in F2 and O2
31(1)
What happens if the s-p separation is small?
31(3)
The octet rule
34(1)
Electronegativity values
35(3)
Pauling electronegativity values, XP
35(1)
Mulliken electronegativity values, XM
36(1)
Allred-Rochow electronegativity values, XAR
36(1)
Electronegativity: final remarks
37(1)
Dipole moments
38(1)
Polar diatomic molecules
38(1)
Molecular dipole moments
39(1)
MO theory: heteronuclear diatomic molecules
39(2)
Which orbital interactions should be considered?
39(1)
Hydrogen fluoride
40(1)
Carbon monoxide
41(1)
Isoelectronic molecules
41(1)
Molecular shape and the VSEPR model
41(5)
Valence-shell electron-pair repulsion theory
41(2)
Limitations of VSEPR theory
43(3)
Molecular shape: geometrical isomerism
46(4)
Square planar species
46(1)
Octahedral species
46(1)
Trigonal bipyramidal species
47(1)
High coordination numbers
47(1)
Double bonds
47(3)
Nuclear properties
50(24)
Introduction
50(1)
Nuclear binding energy
50(2)
Mass defect and binding energy
50(1)
The average binding energy per nucleon
51(1)
Radioactivity
52(2)
Nuclear emissions
52(1)
Nuclear transformations
52(1)
The kinetics of radioative decay
53(1)
Units of radioactivity
54(1)
Artificial isotopes
54(1)
Bombardment of nuclei by high-energy &alpha-particles and neutrons
54(1)
Bombardment of nuclei by `slow' neutrons
54(1)
Nuclear fission
55(3)
The fission of uranium-235
55(2)
The production of energy by nuclear fission
57(1)
Nuclear reprocessing
57(1)
Syntheses of transuranium elements
58(1)
The separation of radioactive isotopes
58(1)
Chemical separation
58(1)
The Szilard-Chalmers effect
58(1)
Nuclear fusion
59(1)
Applications of isotopes
59(3)
Infrared (IR) spectroscopy
60(1)
Kinetic isotope effects
60(1)
Radiocarbon dating
61(1)
Analytical applications
62(1)
Sources of 2H and 13C
62(1)
Deuterium: electrolytic separation of isotopes
62(1)
Carbon-13: chemical enrichment
62(1)
Multinuclear NMR spectroscopy in inorganic chemistry
62(8)
Which nuclei are suitable for NMR spectroscopic studies?
63(1)
Chemical shift ranges
63(1)
Spin-spin coupling
63(4)
Stereochemically non-rigid species
67(1)
Exchange processes in solution
68(2)
Mossbauer spectroscopy in inorganic chemistry
70(4)
The technique of Mossbauer spectroscopy
70(1)
What can isomer shift data tell us?
70(4)
An introduction to molecular symmetry
74(17)
Introduction
74(1)
Symmetry operations and symmetry elements
74(4)
Rotation about an n-fold axis of symmetry
75(1)
Reflection through a plane of symmetry (mirror plane)
75(1)
Reflection through a centre of symmetry (inversion centre)
75(1)
Rotation about an axis, followed by reflection through a plane perpendicular to this axis
76(1)
Identity operator
76(2)
Successive operations
78(1)
Point groups
78(4)
C1 point group
78(1)
C∞v point group
78(1)
D∞h point group
79(1)
Td, Oh or Ih point groups
79(1)
Determining the point group of a molecule or molecular ion
79(3)
Character tables: an introduction
82(1)
Why do we need to recognize symmetry elements?
82(1)
Infrared spectroscopy
83(3)
How many vibrational modes are there for a given molecular species?
83(1)
Selection rule for an infrared active mode of vibration
84(1)
Linear and bent triatomic molecules
84(1)
Trigonal planar and trigonal pyramidal molecules
84(1)
Tetrahedral and square planar species
85(1)
Observing IR spectroscopic absorptions: practical problems
86(1)
Chiral molecules
86(5)
Bonding in polyatomic molecules
91(25)
Introduction
91(1)
Valence bond theory: hybridization of atomic orbitals
91(5)
What is orbital hybridization?
91(1)
sp Hybridization: a scheme for linear species
92(1)
sp2 Hybridization: a scheme for trigonal planar species
92(2)
sp3 Hybridization: a scheme for tetrahedral species
94(1)
Other hybridization schemes
95(1)
Valence bond theory: multiple bonding in polyatomic molecules
96(2)
C2H4
96(1)
HCN
96(1)
BF3
97(1)
π-Bond formation between different types of orbitals
98(1)
Molecular orbital theory: the ligand group orbital approach and application to triatomic molecules
98(2)
Molecular orbital diagrams: moving from a diatomic to polyatomic species
98(1)
Ligand group orbitals: MO approach to the bonding in linear XH2
99(1)
A bent triatomic: H2O
99(1)
Molecular orbital theory applied to the polyatomic molecules BH3, NH3 and CH4
100(5)
BH3
102(1)
NH3
103(1)
CH4
103(1)
A comparison of the MO and VB bonding models
104(1)
Molecular orbital theory: bonding analyses soon become complicated
105(1)
Molecular orbital theory: learning to use the theory objectively
106(10)
CO2
107(1)
XeF2
108(1)
[NO3]-
108(1)
SF6
109(2)
A more advanced problem: B2H6
111(3)
Role of d-orbitals in main group compounds
114(2)
Structures and energetics of metallic and ionic solids
116(28)
Introduction
116(1)
Packing of spheres
116(3)
Cubic and hexagonal close-packing
116(1)
The unit cell: hexagonal and cubic close-packing
117(1)
Interstitial holes: hexagonal and cubic close-packing
118(1)
Non-close-packing: simple cubic and body-centred cubic arrays
118(1)
The packing-of-spheres model applied to the structures of elements
119(2)
Group 18 elements in the solid state
119(1)
H2 and F2 in the solid state
119(1)
Metallic elements in the solid state
119(2)
Polymorphism in metals
121(1)
Polymorphism: phase changes in the solid state
121(1)
Phase diagrams
121(1)
Metallic radii
121(1)
Melting points and standard enthalpies of atomization of metals
122(1)
Alloys and intermetallic compounds
122(3)
Substitutional alloys
123(1)
Interstitial alloys
123(1)
Intermetallic compounds
123(2)
Bonding in metals and semiconductors
125(2)
Electrical conductivity and resistivity
125(1)
Band theory of metals and insulators
125(1)
The Fermi level
126(1)
Band theory of semiconductors
127(1)
Semiconductors
127(1)
Intrinsic semiconductors
127(1)
Extrinsic (n- and p- type) semiconductors
127(1)
Sizes of ions
128(1)
Ionic radii
128(1)
Periodic trends in ionic radii
129(1)
Ionic lattices
129(5)
The rock salt (NaCl) lattice
130(1)
The caesium chloride (CsCl) lattice
131(1)
The fluorite (CaF2) lattice
132(1)
The antifluorite lattice
132(1)
The zinc blende (ZnS) lattice: a diamond-type network
132(1)
The β-cristobalite (SiO2) lattice
133(1)
The wurtzite (ZnS) structure
133(1)
The rutile (TiO2) structure
133(1)
The CdI2 and CdCl2 lattices: layer structures
134(1)
The perovskite (CaTiO3) lattice: a double oxide
134(1)
Crystal structures of semiconductors
134(1)
Lattice energy: estimates from an electrostatic model
135(3)
Coulombic attraction within an isolated ion-pair
135(1)
Coulombic interactions in an ionic lattice
135(1)
Born forces
136(1)
The Born-Lande equation
136(1)
Madelung constants
137(1)
Refinements to the Born-Lande equation
137(1)
Overview
138(1)
Lattice energy: the Born-Haber cycle
138(1)
Lattice energy: `calculated' versus `experimental' values
139(1)
Applications of lattice energies
139(2)
Estimation of electron affinities
139(1)
Fluoride affinities
140(1)
Estimation of standard enthalpies of formation and disproportionation
140(1)
The Kapustinskii equation
141(1)
Defects in solid state lattices: an introduction
141(3)
Schottky defect
141(1)
Frenkel defect
141(1)
Experimental observation of Schottky and Frenkel defects
142(2)
Acids, bases and ions in aqueous solution
144(26)
Introduction
144(1)
Properties of water
144(3)
Structure and hydrogen bonding
144(1)
The self-ionization of water
145(1)
Water as a Bronsted acid or base
145(2)
Definitions and units in aqueous solution
147(1)
Molarity and molality
147(1)
Standard state
147(1)
Activity
147(1)
Bronsted acids and bases
147(3)
Carboxylic acids: examples of mono-, di- and polybasic acids
147(1)
Inorganic acids
148(2)
Inorganic bases: hydroxides
150(1)
Inorganic bases: nitrogen bases
150(1)
The energetics of acid dissociation in aqueous solution
150(2)
Hydrogen halides
150(2)
H2S, H2Se and H2 Te
152(1)
Trends within a series of oxoacids EOn (OH)m
152(1)
Aquated cations: formation and acidic properties
152(2)
Water as a Lewis base
152(1)
Aquated cations as Bronsted acids
153(1)
Amphoteric oxides and hydroxides
154(1)
Amphoteric behaviour
154(1)
Periodic trends in amphoteric properties
155(1)
Solubilities of ionic salts
155(4)
Solubility and saturated solutions
155(1)
Sparingly soluble salts and solubility products
155(1)
The energetics of the dissolution of an ionic salt: ΔsolGo
156(1)
The energetics of the dissolution of an ionic salt: hydration of ions
157(1)
Solubilities: some concluding remarks
158(1)
Common-ion effect
159(1)
Coordination complexes: an introduction
159(3)
Definitions and terminology
159(1)
Investigating coordination complex formation
160(2)
Stability constants of coordination complexes
162(4)
Determination of stability constants
163(1)
Trends in stepwise stability constants
163(1)
Thermodynamic considerations of complex formation: an introduction
163(3)
Factors affecting the stabilities of complexes containing only monodentate ligands
166(4)
Ionic size and charge
166(1)
Hard and soft metal centres and ligands
166(4)
Reduction and oxidation
170(17)
Introduction
170(1)
Oxidation and reduction
170(1)
Oxidation states
170(1)
Stock nomenclature
171(1)
Standard reduction potentials, E°, and relationships between E°, ΔG° and K
171(5)
Half-cells and galvanic cells
171(1)
Defining and using standard reduction potentials, E°
172(2)
Dependence of reduction potentials on cell conditions
174(2)
The effect of complex formation or precipitation on Mz+ /M reduction potentials
176(3)
Half-cells involving silver halides
176(1)
Modifying the relative stabilities of different oxidation states of a metal
177(2)
Disproportionation reactions
179(1)
Disproportionation
179(1)
Stabilizing species against disproportionation
180(1)
Potential diagrams
180(1)
The relationships between standard reduction potentials and some other quantities
181(2)
Factors influencing the magnitudes of standard reduction potentials
181(1)
Values of ΔfG° for aqueous ions
182(1)
Applications of redox reactions to the extraction of elements from their ores
183(4)
Ellingham diagrams
183(4)
Non-aqueous media
187(17)
Introduction
187(1)
Relative permittivity
187(1)
Energetics of ionic salt transfer from water to an organic solvent
188(1)
Acid-base behaviour in non-aqueous solvents
189(1)
Strengths of acids and bases
189(1)
Levelling and differentiating effects
190(1)
`Acids' in acidic solvents
190(1)
Acids and bases: a solvent-oriented definition
190(1)
Self-ionizing and non-ionizing non-aqueous solvents
190(2)
Liquid ammonia
192(2)
Physical properties
192(1)
Self-ionization
192(1)
Reactions in liquid NH3
192(1)
Solutions of s-block metals in liquid NH3
193(1)
Redox reactions in liquid NH3
194(1)
Liquid hydrogen fluoride
194(2)
Physical properties
194(1)
Acid-base behaviour in liquid HF
195(1)
Electrolysis in liquid HF
196(1)
Sulfuric acid
196(1)
Physical properties
196(1)
Acid-base behaviour in liquid H2SO4
196(1)
Fluorosulfonic acid
197(1)
Physical properties
197(1)
Superacids
197(1)
Bromine trifluoride
198(1)
Physical properties
198(1)
Behaviour of fluoride salts and molecular fluorides in BrF3
198(1)
Reactions in BrF3
198(1)
Dinitrogen tetraoxide
199(1)
Physical properties
199(1)
Reactions in N2O4
199(1)
Ionic liquids
200(4)
Molten salt solvent systems
201(1)
Ionic salts at ambient temperatures
201(1)
Reactions in and applications of molten salt media
201(3)
Hydrogen
204(15)
Hydrogen: the simplest atom
204(1)
The H+ and H- ions
204(1)
The hydrogen ion (proton)
204(1)
The hydride ion
204(1)
Isotopes of hydrogen
205(1)
Protium and deuterium
205(1)
Deuterated compounds
205(1)
Tritium
205(1)
Dihydrogen
206(3)
Occurrence
206(1)
Physical properties
206(1)
Synthesis and uses
206(1)
Reactivity
207(2)
Polar and non-polar E--H bonds
209(1)
Hydrogen bonding
210(4)
The hydrogen bond
210(1)
Trends in boiling points, melting points and enthalpies of vaporization for p-block binary hydrides
211(1)
Infrared spectroscopy
211(2)
Solid state structures
213(1)
Hydrogen bonding in biological systems
214(1)
Binary hydrides: classification and general properties
214(5)
Classification
214(1)
Interstitial metal hydrides
214(1)
Saline hydrides
214(2)
Molecular hydrides
216(1)
Polymeric hydrides
217(1)
Intermediate hydrides
217(2)
Group 1: the alkali metals
219(14)
Introduction
219(1)
Occurrence, extraction and uses
219(2)
Occurrence
219(1)
Extraction
219(2)
Major uses of the alkali metals and their compounds
221(1)
Physical properties
221(2)
General properties
221(1)
Atomic spectra and flame tests
222(1)
Radioactive isotopes
223(1)
NMR active nuclei
223(1)
The metals
223(1)
Appearance
223(1)
Reactivity
223(1)
Halides
224(1)
Oxides and hydroxides
225(1)
Oxides, peroxides, superoxides, suboxides and ozonides
225(1)
Hydroxides
226(1)
Salts of oxoacids: carbonates and hydrogencarbonates
226(1)
Aqueous solution chemistry
227(2)
Hydrated ions
227(1)
Complex ions
228(1)
Non-aqueous coordination chemistry
229(4)
The group 2 metals
233(14)
Introduction
233(1)
Occurrence, extraction and uses
233(3)
Occurrence
233(1)
Extraction
234(1)
Major uses of the group 2 metals and their compounds
235(1)
Physical properties
236(1)
General properties
236(1)
Flame tests
236(1)
Radioactive isotopes
236(1)
The metals
237(1)
Appearance
237(1)
Reactivity
237(1)
Halides
238(2)
Beryllium halides
238(1)
Halides of Mg, Ca, Sr and Ba
239(1)
Oxides and hydroxides
240(2)
Oxides and peroxides
240(1)
Hydroxides
241(1)
Salts of oxoacids
242(1)
Complex ions in aqueous solution
243(1)
Aqua species of beryllium
243(1)
Aqua species of Mg2+, Ca2+, Sr2+ and Ba2+
243(1)
Complexes with ligands other than water
243(1)
Complexes with amido or alkoxy ligands
244(3)
The group 13 elements
247(34)
Introduction
247(1)
Occurrence, extraction and uses
247(2)
Occurrence
247(1)
Extraction
247(1)
Major uses of the group 13 elements and their compounds
248(1)
Physical properties
249(2)
Electronic configurations and oxidation states
250(1)
NMR active nuclei
251(1)
The elements
251(2)
Appearance
251(1)
Structures of the elements
252(1)
Reactivity
253(1)
Simple hydrides
253(4)
Neutral hydrides
253(3)
The [MH4]- ions
256(1)
Halides and complex halides
257(4)
Boron halides: BX3 and B2X4
257(2)
Al(III), Ga(III), In(III) and Tl(III) halides and their complexes
259(1)
Lower oxidation state Al, Ga, In and Tl halides
260(1)
Oxides, oxoacids, oxoanions and hydroxides
261(4)
Boron oxides, oxoacids and oxoanions
261(2)
Aluminium oxides, oxoacids, oxoanions and hydroxides
263(2)
Oxides of Ga, In and Tl
265(1)
Compounds containing nitrogen
265(4)
Nitrides
265(1)
Molecular species containing boron-nitrogen bonds
266(2)
Molecular species containing group 13 metal-nitrogen bonds
268(1)
Aluminium to thallium: salts of oxoacids, aqueous solution chemistry and complexes
269(1)
Aluminium sulfate and alums
269(1)
Aqua ions
269(1)
Redox reactions in aqueous solution
269(1)
Coordination complexes of the M3+ ions
270(1)
Metal borides
270(2)
Electron-deficient borane clusters: an introduction
272(9)
Boron hydrides
272(9)
The group 14 elements
281(34)
Introduction
281(1)
Occurrence, extraction and uses
281(3)
Occurrence
281(1)
Extraction and manufacture
282(1)
Uses
282(2)
Physical properties
284(2)
Ionization energies and cation formation
284(1)
Some energetic and bonding considerations
284(2)
NMR active nuclei
286(1)
Mossbauer spectroscopy
286(1)
Allotropes of carbon
286(6)
Graphite and diamond: structure and properties
286(1)
Graphite: intercalation compounds
287(1)
Fullerenes: synthesis and structure
288(1)
Fullerenes: reactivity
289(3)
Carbon nanotubes
292(1)
Structural and chemical properties of silicon, gemanium, tin and lead
292(1)
Structures
292(1)
Chemical properties
292(1)
Hydrides
292(3)
Binary hydrides
293(1)
Halohydrides of silicon and germanium
294(1)
Carbides, silicides, germides, stannides and plumbides
295(2)
Carbides
295(1)
Silicides
295(1)
Germides, stannides and plumbides
296(1)
Halides and complex halides
297(3)
Carbon halides
297(2)
Silicon halides
299(1)
Halides of germanium, tin and lead
299(1)
Oxides, oxoacids and hydroxides
300(8)
Oxides and oxoacids of carbon
300(2)
Silica, silicates and aluminosilicates
302(4)
Oxides, hydroxides and oxoacids of germanium, tin and lead
306(2)
Silicones
308(1)
Sulfides
309(1)
Cyanogen and silicon nitride
310(2)
Cyanogen and its derivatives
310(2)
Silicon nitride
312(1)
Aqueous solution chemistry and salts of oxoacids of tin and lead
312(3)
The group 15 elements
315(36)
Introduction
315(1)
Occurrence, extraction and uses
315(2)
Occurrence
315(1)
Extraction
316(1)
Uses
316(1)
Physical properties
317(2)
Bonding considerations
317(2)
NMR active nuclei
319(1)
Radioactive isotopes
319(1)
The elements
319(2)
Nitrogen
319(1)
Phosphorus
320(1)
Arsenic, antimony and bismuth
321(1)
Hydrides
321(5)
Trihydrides, EH3 (E = N, P, As, Sb and Bi)
321(2)
Hydrides E2H4 (E = N, P, As)
323(1)
Chloramine and hydroxylamine
324(1)
Hydrogen azide and azide salts
325(1)
Nitrides, phosphides, arsenides, antimonides and bismuthides
326(1)
Nitrides
326(1)
Phosphides
326(1)
Arsenides, antimonides and bismuthides
327(1)
Halides, oxohalides and complex halides
327(5)
Nitrogen halides
327(2)
Oxofluorides and oxochlorides of nitrogen
329(1)
Phosphorus halides
329(1)
Phosphoryl trichloride, POCI3
330(1)
Arsenic and antimony halides
330(2)
Bismuth halides
332(1)
Oxides of nitrogen
332(3)
Dinitrogen monoxide, N2O
332(1)
Nitrogen monoxide, NO
333(1)
Dinitrogen trioxide, N2O3
334(1)
Dinitrogen tetraoxide, N2O4, and nitrogen dioxide, NO2
334(1)
Dinitrogen pentaoxide, N2O5
335(1)
Oxoacids of nitrogen
335(3)
Hyponitrous acid, H2N2O2
335(1)
Nitrous acid, HNO2
336(1)
Nitric acid, HNO3, and its derivatives
336(2)
Oxides of phosphorus, arsenic, antimony and bismuth
338(1)
Oxides of phosphorus
338(1)
Oxides of arsenic, antimony and bismuth
339(1)
Oxoacids of phosphorus
339(4)
Phosphinic acid, H3PO2
339(1)
Phosphonic acid, H3PO3
340(1)
Hypophosphoric acid, H4P2O6
341(1)
Phosphoric acid, H3PO4, and its derivatives
341(2)
Oxoacids of arsenic, antimony and bismuth
343(1)
Phosphazenes
344(2)
Sulfides and selenides
346(2)
Sulfides and selenides of phosphorus
346(1)
Arsenic, antimony and bismuth sulfides
347(1)
Aqueous solution chemistry
348(3)
The group 16 elements
351(30)
Introduction
351(1)
Occurrence, extraction and uses
351(2)
Occurrence
351(1)
Extraction
352(1)
Uses
353(1)
Physical properties and bonding considerations
353(1)
NMR active nuclei and isotopes as tracers
354(1)
The elements
354(4)
Dioxygen
354(1)
Ozone
355(1)
Sulfur: allotropes
356(1)
Sulfur: reactivity
357(1)
Selenium and tellurium
357(1)
Hydrides
358(4)
Water, H2O
358(1)
Hydrogen peroxide, H2O2
359(1)
Hydrides H2E (E = S, Se, Te)
360(1)
Polysufanes
361(1)
Metal sulfides, polysulfides, polyselenides and polytellurides
362(2)
Sulfides
362(1)
Polysulfides
362(1)
Polyselenides and polytellurides
363(1)
Haildes, oxohalides andcomplex halides
364(5)
Oxygen flurides
364(1)
Sulfur fluorides and oxofluorides
364(2)
Sulfur chlorides and oxochlorides
366(1)
Halides of selenium and tellurium
367(2)
Oxides
369(3)
Oxides of sulfur
369(2)
Oxides of selenium and tellurium
371(1)
Oxoacids and their salts
372(4)
Dithionous acid, H2S2O4
372(1)
Sulfurous and disulfurous acids, H2SO3 and H2S2O5
373(1)
Dithionic acid, H2S2O6
374(1)
Sulfuric acid, H2SO4
374(1)
Fluoro- and chlorosulfonic acids, HSO3F and HSO3 Cl
374(1)
Polyoxoacids with S-O-S units
374(1)
Peroxosulfuric acids, H2S2O8, and H2SO5
375(1)
Thiosulfuric acid, H2S2O3, and polythionates
375(1)
Oxoacids of selenium and tellurium
375(1)
Compounds of sulfur and selenium with nitrogen
376(2)
Sulfur-nitrogen compounds
376(2)
Tetraselenium tetranitride
378(1)
Aqueous solution chemistry of sulfur, selenium and tellurium
378(3)
The group 17 elements
381(20)
Introduction
381(1)
Fluorine, chlorine, bromine and iodine
381(1)
Astatine
382(1)
Occurrence, extraction and uses
382(2)
Occurrence
382(1)
Extraction
383(1)
Uses
383(1)
Physical properties and bonding considerations
384(2)
NMR active nuclei and isotopes as tracers
385(1)
The elements
386(2)
Difluorine
386(1)
Dichlorine, dibromine and diiodine
386(1)
Charge transfer complexes
387(1)
Clathrates
388(1)
Hydrogen halides
388(1)
Metal halides: structures and energetics
389(1)
Interhalogen compounds and polyhalogen ions
390(4)
Interhalogen compounds
390(2)
Bonding in [XY2]- ions
392(1)
Polyhalogen cations
393(1)
Polyhalide anions
393(1)
Oxides and oxoflurides of chlorine, bromine and iodine
394(1)
Oxides
394(1)
Oxofluorides
395(1)
Oxoacids and their salts
395(3)
Hypoflurous acid, HOF
395(1)
Oxoacids of chlorine, bromine and iodine
395(3)
Aqueous solution chemistry
398(3)
The group 18 elements
401(9)
Introduction
401(1)
Occurrence, extraction and uses
402(1)
Occurrence
402(1)
Extraction
402(1)
Uses
402(1)
Physical properties
403(1)
NMR active nuclei
404(1)
Compounds of xenon
404(3)
Fluorides
404(2)
Oxides
406(1)
Oxofluorides
407(1)
Other compounds of xenon
407(1)
Compounds of krypton and radon
407(3)
Organometallic compounds of s-and p-block elements
410(24)
Introduction
410(1)
Group 1: alkali metal organometallics
411(2)
Group 2 organometallics
413(3)
Beryllium
415(1)
Magnesium
415(1)
Group 13
416(6)
Boron
416(1)
Aluminium
417(2)
Gallium, indium and thallium
419(3)
Group 14
422(6)
Silicon
422(1)
Germanium
423(1)
Tin
424(2)
Lead
426(2)
Group 15
428(3)
Bonding aspects
428(1)
Arsenic, antimony and bismuth
428(3)
Group 16
431(3)
Selenium and tellurium
431(3)
d-Block chemistry: general considerations
434(18)
Topic overview
434(1)
Ground state electronic configurations
434(1)
d-Block metals versus transition elements
434(1)
Electronic configurations
435(1)
Physical properties
435(1)
The reactivity of the metals
436(1)
Characteristic properties: a general perspective
437(1)
Colour
437(1)
Paramagnetism
437(1)
Complex formation
437(1)
Variable oxidation states
438(1)
Electroneutrality principle
438(1)
Coordination numbers
439(7)
The Kepert model
440(1)
Coordination number two
441(1)
Coordination number three
441(1)
Coordination number four
441(1)
Coordination number five
442(1)
Coordination number six
443(1)
Coordination number seven
443(1)
Coordination number eight
444(1)
Coordination number nine
445(1)
Coordination numbers of ten and above
445(1)
Isomerism in d-block metal complexes
446(6)
Structural isomerism: ionization isomers
446(1)
Structural isomerism: hydration isomers
446(1)
Structural isomerism: coordination isomerism
447(1)
Structural isomerism: linkage isomerism
447(1)
Structural isomerism: polymerization isomerism
447(1)
Stereoisomerism: geometrical isomers
447(1)
Stereoisomerism: optical isomers
447(5)
d-Block chemistry: coordination complexes
452(36)
Introduction
452(1)
High - and low-spin states
452(1)
Bonding in d-block metal complexes: valence bond theory
452(2)
Hybridization schemes
452(1)
Applying VB theory
453(1)
Crystal field theory
454(7)
The octahedral crystal field
455(2)
Crystal field stablization energy: high - and low-spin octahedral complexes
457(1)
Jahn-Teller distortions
457(2)
The tetrahedral crystal field
459(1)
The square planar crystal field
459(2)
Other crystal fields
461(1)
Crystal field theory: uses and limitations
461(1)
Molecular orbital theory: octahedral complexes
461(4)
Complexes with no metal-ligand π-bonding
461(1)
Complexes with metal-ligand π-bonding
461(4)
Ligand field theory
465(1)
Electronic spectra
466(7)
Spectral features
466(1)
Selection rules
466(1)
Electronic spectra of octahedral and tetrahedral complexes
467(5)
Microstates
472(1)
Tanabe-Sugano diagrams
473(1)
Evidence for metal-ligand covalent bonding
473(1)
The nephelauxetic effect
473(1)
ESR spectroscopy
474(1)
Magnetic properties
474(7)
Magnetic susceptibility and the spin-only formula
474(3)
Spin and orbital contributions to the magnetic moment
477(2)
The effects of temperature on μeff
479(1)
Spin crossover
479(1)
Ferromagnetism, antiferromagnetism and ferrimagnetism
480(1)
Thermodynamic aspects: ligand field stabilization energies (LFSE)
481(2)
Trends in LFSE
481(1)
Lattice energies and hydration energies of Mn+ ions
481(1)
Octahedral versus tetrahedral coordination: spinels
482(1)
Thermodynamic aspects: the Irving-Williams series
483(1)
Thermodynamic aspects: Oxidation states in aqueous solution
484(4)
d-Block metal chemistry: the first row metals
488(46)
Introduction
488(1)
Occurrence, extraction and uses
488(3)
Physical properties: an overview
491(1)
Group 3: scandium
491(1)
The metal
491(1)
Scandium(III)
491(1)
Group 4: titanium
492(4)
The metal
492(1)
Titanium(IV)
493(2)
Titanium(III)
495(1)
Low oxidation states
495(1)
Group 5: vanadium
496(3)
The metal
496(1)
Vanadium(V)
496(2)
Vanadium(IV)
498(1)
Vandadium(III)
498(1)
Vanadadium(II)
499(1)
Group 6: chromium
499(5)
The metal
499(1)
Chromium(IV)
499(2)
Chromium(V) and chromium(IV)
501(1)
Chromium(III)
501
Chromium(II)
492(11)
Chromium-chromium multiple bonds
503(1)
Group 7: manganese
504(5)
The metal
504(1)
Manganese(VII)
504(2)
Manganese(VI)
506(1)
Manganese(V)
506(1)
Manganese(IV)
506(1)
Manganese(III)
507(1)
Manganese(II)
508(1)
Group 8: iron
509(6)
The metal
509(1)
Iron(VI), iron(V) and iron(IV)
509(1)
Iron(III)
510(3)
Iron(II)
513(2)
Group 9: cobalt
515(6)
The metal
515(1)
Cobalt(IV)
515(1)
Cobalt(III)
515(3)
Cobalt(II)
518(3)
Group 10: nickel
521(3)
The metal
521(1)
Nickel(IV) and nickel(III)
521(1)
Nickel(II)
522(2)
Nickel(I)
524(1)
Group 11: copper
524(5)
The metal
524(1)
Copper(IV) and (III)
525(1)
Copper(II)
525(3)
Copper(I)
528(1)
Group 12: zinc
529(5)
The metal
529(1)
Zinc(II)
530(4)
d-Block metal chemistry: the second and third row metals
534(50)
Introduction
534(1)
Occurrence, extraction and uses
534(3)
Physical properties
537(3)
Effects of the lanthanoid contraction
539(1)
Coordination numbers
540(1)
NMR active nuclei
540(1)
Group 3: yttrium
540(1)
The metal
540(1)
Yttrium(III)
540(1)
Group 4: zirconium and hafnium
540(3)
The metals
540(1)
Zirconium(IV) and hafnium(IV)
541(1)
Lower oxidation states of zirconium and hafnium
542(1)
Zirconium clusters
542(1)
Group 5: niobium and tantalum
543(3)
The metals
543(1)
Niobium(V) and tantalum(V)
543(2)
Niobium(IV) and tantalum(IV)
545(1)
Lower oxidation state halides
545(1)
Group 6: molybdenum and tungsten
546(8)
The metals
546(1)
Molybdenum(VI) and tungsten(VI)
547(3)
Molybdenum(V) and tungsten(V)
550(1)
Molybdenum(IV) and tungsten(IV)
551(1)
Molybdenum(III) and tungsten(III)
551(1)
Molybdenum(II) and tungsten(II)
552(2)
Group 7: technetium and rhenium
554(4)
The metals
554(1)
High oxidation states of technetium and rhenium: M(VII), M(VI) and M(V)
554(2)
Technetium(IV) and rhenium(IV)
556(1)
Technetium(III) and rhenium(III)
557(1)
Group 8: ruthenium and osmium
558(8)
The metals
558(1)
High oxidation states of ruthenium and osmium: M(VIII), M(VII) and M(VI)
558(2)
Ruthenium(V), (IV) and osmium(V), (IV)
560(1)
Ruthenium(III) and osmium(III)
561(2)
Ruthenium(II) and osmium(II)
563(2)
Mixed-valence ruthenium complexes
565(1)
Group 9: rhodium and iridium
566(4)
The metals
566(1)
High oxidation states of rhodium and iridium: M(VI) and M(V)
566(1)
Rhodium(IV) and iridium(IV)
566(1)
Rhodium(III) and iridium(III)
566(2)
Rhodium(II) and iridium(II)
568(1)
Rhodium(I) and iridium(I)
569(1)
Group 10: palladium and platinum
570(5)
The metals
570(1)
The highest oxidation states: M(VI) and M(V)
570(1)
Palladium(IV) and platinum(IV)
570(1)
Palladium(III), platinum(III) and mixed valence complexes
571(1)
Palladium(II) and platinum(II)
572(3)
Group 11: silver and gold
575(4)
The metals
575(1)
Gold(V) and silver (V)
576(1)
Gold(III) and silver (III)
576(1)
Silver(II)
577(1)
Gold(I) and silver(I)
577(2)
Group 12: cadimium and mercury
579(5)
The metals
579(1)
Cadmium(II)
580(1)
Mercury(II)
580(1)
Mercury(I)
581(3)
Organometallic compounds of d-block elements
584(38)
Introduction
584(1)
Hapticity of a ligand
584(1)
Common types of ligand: bonding and spectroscopy
584(6)
σ-Bonded alkyl, aryl and related ligands
584(1)
Carbonyl ligands
585(1)
Hydride ligands
586(1)
Phosphine and related ligands
587(1)
π-Bonded organic ligands
587(3)
Dinitrogen
590(1)
Dihydrogen
590(1)
The 18-electron rule
590(2)
Metal carbonyls: synthesis, physical properties and structure
592(5)
Synthesis and physical properties
593(1)
Structures
594(3)
The isolobal principle and application of Wade's rules
597(2)
Total valence electron counts in d-block organometallic clusters
599(2)
Single cage structures
599(1)
Condensed cages
600(1)
Limitations of total valence counting schemes
601(1)
Types of organometallic reactions
601(4)
Substitution of CO ligands
601(1)
Oxidative addition
602(1)
Alkyl and hydrogen migrations
602(1)
β-Hydrogen elimination
603(1)
α-Hydrogen abstraction
604(1)
Metal carbonyls: selected reactions
605(1)
Metal carbonyl hydrides and halides
606(1)
Alkyl, aryl, alkene and alkyne complexes
606(3)
σ-Bonded alkyl and aryl ligands
606(1)
Alkene ligands
607(1)
Alkyne ligands
608(1)
Allyl and buta-1,3-diene complexes
609(2)
Allyl and related ligands
609(1)
Buta-1,3-diene and related ligands
610(1)
Carbene and carbyne complexes
611(1)
Complexes containing η5-cyclopentadienyl ligands
612(3)
Ferrocene and other metallocenes
612(1)
(η5-Cp)2Fe2(CO)4 and derivatives
613(2)
Complexes containing η6- and η7-ligands
615(3)
η6-Arene ligands
615(2)
Cycloheptatriene and derived ligands
617(1)
Complexes containing the η4-cyclobutadiene ligand
618(4)
The f-block metals: lanthanoids and actinoids
622(19)
Introduction
622(1)
f-Orbitals and oxidation states
623(1)
Atom and ion sizes
624(1)
The lanthanoid contraction
624(1)
Coordination numbers
624(1)
Spectroscopic and magnetic properties
625(1)
Electronic spectra and magnetic moments: lanthanoids
625(1)
Luminescence of lanthanoid complexes
626(1)
Electronic spectra and magnetic moments: actinoids
626(1)
Sources of the lanthanoids and actinoids
626(2)
Occurrence and separation of the lanthanoids
626(2)
The actinoids
628(1)
Lanthanoid metals
628(1)
Inorganic compounds and coordination complexes of the lanthanoids
629(2)
Halides
629(1)
Hydroxides and oxides
629(1)
Complexes of Ln(III)
629(2)
Organometallic complexes of the lanthanoids
631(2)
σ-Bonded complexes
631(1)
Cyclopentadienyl complexes
631(2)
Bis(arene) derivatives
633(1)
Complexes containing the η8-cyclooctatetraenyl ligand
633(1)
The actinoid metals
633(1)
Inorganic compounds and coordination complexes of thorium and uranium
634(2)
Thorium
634(1)
Uranium
635(1)
Organometallic complexes of thorium and uranium
636(5)
σ-Bonded complexes
636(1)
Cyclopentadienyl derivatives
637(1)
Complexes containing the η8-cyclooctatetraenyl ligand
638(3)
d-Block metal complexes: reaction mechanisms
641(21)
Introduction
641(1)
Ligand substitutions: some general points
641(2)
Kinetically inert and labile complexes
641(1)
Stoichiometric equations say nothing about mechanism
641(1)
Types of substitution mechanism
642(1)
Activation parameters
642(1)
Substitution in square planar complexes
643(3)
Rate equations, mechanism and the trans-effect
643(3)
Ligand nucleophilicity
646(1)
Substitution and racemization in octahedral complexes
646(8)
Water exchange
647(1)
The Eigen--Wilkins mechanism
648(2)
Stereochemistry of substitution
650(2)
Base-catalyzed hydrolysis
652(1)
Isomerization and racemization of octahedral complexes
652(2)
Electron-transfer processes
654(8)
Inner-sphere mechanism
654(2)
Outer-sphere mechanism
656(6)
Homogeneous and heterogeneous catalysis
662(23)
Introduction and definitions
662(1)
Catalysis: introductory concepts
662(3)
Free energy profiles for a reaction: catalyzed versus non-catalyzed
662(1)
Catalytic cycles
663(1)
Choosing a catalyst
664(1)
Homogeneous catalysis: industrial applications
665(6)
Alkene hydrogenation
665(2)
Monsanto acetic acid synthesis
667(1)
Tennessee--Eastman acetic anhydride process
668(1)
Hydroformylation (Oxo-process)
669(2)
Alkene oligomerization
671(1)
Homogeneous catalyst development
671(2)
Polymer-supported catalysts
671(1)
Biphasic catalysis
672(1)
d-Block organometallic clusters as homogeneous catalysts
672(1)
Heterogeneous catalysis: surfaces and interactions with adsorbates
673(2)
Heterogeneous catalysis: commercial applications
675(5)
Alkene polymerization: Ziegler-Natta catalysis
675(1)
Fischer-Tropsch carbon chain growth
676(1)
Haber process
677(1)
Production of SO3 in the Contact process
678(1)
Catalytic converters
678(1)
Zeolites as catalysts for organic transformations: uses of ZSM-5
679(1)
Heterogeneous catalysis: organometallic cluster models
680(5)
Some aspects of solid state chemistry
685(16)
Introduction
685(1)
Defects in solid state lattices
685(2)
Types of defect: stoichiometric and non-stoichiometric compounds
685(1)
Colour centres (F-centres)
686(1)
Thermodynamic effects of crystal defects
686(1)
Electrical conductivity in ionic solids
687(2)
Sodium and lithium ion conductors
687(1)
d-Block metal(II) oxides
688(1)
Superconductivity
689(2)
Superconductors: early examples and basic theory
689(1)
High-temperature superconductors
689(2)
Applications of superconductors
691(1)
Ceramic materials: colour pigments
691(1)
White pigments (opacifiers)
691(1)
Adding colour
691(1)
Chemical vapour deposition (CVD)
692(5)
High-purity silicon for semiconductors
692(1)
α-Boron nitride
693(1)
Silicon nitride and carbide
693(1)
III-V Semiconductors
694(1)
Metal deposition
695(1)
Ceramic coatings
695(1)
Perovskites and cuprate superconductors
695(2)
Inorganic fibres
697(4)
Boron fibres
697(1)
Carbon fibres
698(1)
Silicon carbide fibres
698(1)
Alumina fibres
698(3)
The trace metals of life
701(31)
Introduction
701(2)
Amino acids, peptides and proteins: some terminology
701(2)
Metal storage and transport: Fe, Cu, Zn and V
703(4)
Iron storage and transport
703(3)
Metallothioneins: transporting some toxic metals
706(1)
Dealing with O2
707(7)
Haemoglobin and myoglobin
707(3)
Haemocyanin
710(1)
Haemerythrin
711(3)
Cytochromes P-450
714(1)
Biological redox processes
714(10)
Blue copper proteins
714(3)
The mitochondrial electron-transfer chain
717(1)
Iron-sulfur proteins
717(5)
Cytochromes
722(2)
The Zn2+ ion: Nature's Lewis acid
724(8)
Carbonic anhydrase II
724(1)
Carboxypeptidase A
725(3)
Carboxypeptidase G2
728(1)
Cobalt-for-zinc ion substitution
728(4)
Appendices 732(23)
1 Greek letters with pronunciations
733(1)
2 Abbreviations and symbols for quantities and units
734(4)
3 Selected character tables
738(2)
4 The electromagnetic spectrum
740(2)
5 Naturally occurring isotopes and their abundances
742(2)
6 Van der Waals, metallic, covalent and ionic radii for the s-, p- and first row d-block elements
744(2)
7 Pauling electronegativity values (χp) for selected elements of the periodic table
746(1)
8 Ground state electronic configurations of the elements and ionization energies for the first five ionizations
747(3)
9 Electron affinities
750(1)
10 Standard enthalpies of atomization (ΔaHo) of the elements at 298 K
751(1)
11 Selected standard reduction potentials (298 K)
752(3)
Answers to non-descriptive problems 755(16)
Index 771

Rewards Program

Write a Review