Note: Supplemental materials are not guaranteed with Rental or Used book purchases.
Purchase Benefits
What is included with this book?
This book is for sophomore-level or junior/senior-level first courses in linear algebra and assumes calculus as a prerequisite.
This thorough and accessible text, from one of the leading figures in the use of technology in linear algebra, gives students a challenging and broad understanding of the subject. The author infuses key concepts with their modern practical applications to offer students examples of how mathematics is used in the real world. Each chapter contains integrated worked examples and chapter tests. The book stresses the important roles geometry and visualization play in understanding linear algebra.
Steven J. Leon is a Chancellor Professor of Mathematics at the University of Massachusetts Dartmouth. He has been a Visiting Professor at Stanford University, ETH Zurich (the Swiss Federal Institute of Technology), KTH (the Royal Institute of Technology in Stockholm), UC San Diego, and Brown University. His areas of specialty are linear algebra and numerical analysis.
Leon is currently serving as Chair of the Education Committee of the International Linear Algebra Society and as Contributing Editor to Image, the Bulletin of the International Linear Algebra Society. He had previously served as Editor-in-Chief of Image from 1989 to 1997. In the 1990’s he also served as Director of the NSF sponsored ATLAST Project (Augmenting the Teaching of Linear Algebra using Software Tools). The project conducted 18 regional faculty workshops during the period from 1992–1997.
Preface
What’s New in the Eighth Edition?
Computer Exercises
Overview of Text
Suggested Course Outlines
Supplementary Materials
Acknowledgments
1. Matrices and Systems of Equations
1.1 Systems of Linear Equations
1.2 Row Echelon Form
1.3 Matrix Arithmetic
1.4 Matrix Algebra
1.5 Elementary Matrices
1.6 Partitioned Matrices
Matlab Exercises
Chapter Test A
Chapter Test B
2. Determinants
2.1 The Determinant of a Matrix
2.2 Properties of Determinants
2.3 Additional Topics and Applications
Matlab Exercises
Chapter Test A
Chapter Test B
3. Vector Spaces
3.1 Definition and Examples
3.2 Subspaces
3.3 Linear Independence
3.4 Basis and Dimension
3.5 Change of Basis
3.6 Row Space and Column Space
Matlab Exercises
Chapter Test A
Chapter Test B
4. Linear Transformations
4.1 Definition and Examples
4.2 Matrix Representations of Linear Transformations
4.3 Similarity
Matlab Exercises
Chapter Test A
Chapter Test B
5. Orthogonality
5.1 The Scalar Product in R^{n}
5.2 Orthogonal Subspaces
5.3 Least Squares Problems
5.4 Inner Product Spaces
5.5 Orthonormal Sets
5.6 The Gram—Schmidt Orthogonalization Process
5.7 Orthogonal Polynomials
Matlab Exercises
Chapter Test A
Chapter Test B
6. Eigenvalues
6.1 Eigenvalues and Eigenvectors
6.2 Systems of Linear Differential Equations
6.3 Diagonalization
6.4 Hermitian Matrices
6.5 The Singular Value Decomposition
6.6 Quadratic Forms
6.7 Positive Definite Matrices
6.8 Nonnegative Matrices
Matlab Exercises
Chapter Test A
Chapter Test B
7. Numerical Linear Algebra
7.1 Floating-Point Numbers
7.2 Gaussian Elimination
7.3 Pivoting Strategies
7.4 Matrix Norms and Condition Numbers
7.5 Orthogonal Transformations
7.6 The Eigenvalue Problem
7.7 Least Squares Problems
Matlab Exercises
Chapter Test A
Chapter Test B
Appendix: MATLAB
The MATLAB Desktop Display
Basic Data Elements
Submatrices
Generating Matrices
Matrix Arithmetic
MATLAB Functions
Programming Features
M-files
Relational and Logical Operators
Columnwise Array Operators
Graphics
Symbolic Toolbox
Help Facility
Conclusions
Bibliography
A. Linear Algebra and Matrix Theory
B. Applied and Numerical Linear Algebra
C. Books of Related Interest
Answers to Selected Exercises