CART

(0) items

Machine Design : An Integrated Approach,9780130177063
This item qualifies for
FREE SHIPPING!

FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Machine Design : An Integrated Approach

by
Edition:
2nd
ISBN13:

9780130177063

ISBN10:
0130177067
Format:
Paperback
Pub. Date:
1/1/2000
Publisher(s):
Prentice Hall
List Price: $123.00
More New and Used
from Private Sellers
Starting at $28.05
See Prices

Rent Textbook

We're Sorry
Sold Out

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

New Textbook

We're Sorry
Sold Out

Summary

FEATURES/BENEFITS

  • NEW—The text has been made independent of any software package.
  • NEW—TKSOLVER models of all examples and case studies are included in the CD-ROM.
  • NEW—Updated MathCAD models of all examples and case studies are included in the CD-ROM.
  • NEW—All examples and case studies have been redone, and some expanded to make their presentations more detailed.
  • NEW—The numbers of problems has been increased by roughly 25%.
  • NEW—Some sections of the text have included augmented figures, discussion or explanation.
  • May be used without the accompanying software and models with no detriment to understanding.
  • May be used in conjunction with TKSOLVER models and programs provided on the CD-ROM.
  • May be used in conjunction with the MathCAD models and engine provided on the CD-ROM.

Table of Contents

Preface to the Second Edition xix
Preface to the First Edition xxi
Part I Fundamentals 1(508)
Introduction to Design
3(28)
Design
3(3)
Machine Design
3(1)
Machine
4(1)
Iteration
5(1)
A Design Process
6(2)
Problem Formulation and Calculation
8(2)
Definition Stage
9(1)
Preliminary Design Stage
9(1)
Detailed Design Stage
10(1)
Documentation Stage
10(1)
The Engineering Model
10(2)
Estimation and First-Order Analysis
10(1)
The Engineering Sketch
11(1)
Computer-Aided Design and Engineering
12(5)
Computer-Aided Design (CAD)
12(4)
Computer-Aided Engineering (CAE)
16(1)
Computational Accuracy
17(1)
The Engineering Report
17(1)
Factors of Safety and Design Codes
18(4)
Factor of Safety
18(1)
Choosing a Safety Factor
19(2)
Design and Safety Codes
21(1)
Statistical Considerations
22(1)
Units
22(6)
Example 1-1
25(3)
Summary
28(1)
Important Equations Used in this Chapter
28(1)
References
29(1)
Bibliography
29(1)
Problems
30(1)
Materials and Processes
31(44)
Introduction
31(1)
Material Property Definitons
31(13)
The Tensile Test
33(3)
Ductility and Brittleness
36(1)
The Compression Test
37(1)
The Bending Test
38(1)
The Torsion Test
38(2)
Fatigue Strength and Endurance Limit
40(1)
Impact Resistance
41(2)
Fracture Toughness
43(1)
Creep and Temperature Effects
43(1)
The Statistical Nature of Material Properties
44(1)
Homogeneity and Isotropy
45(1)
Hardness
46(6)
Heat Treatment
47(2)
Surface (Case) Hardening
49(1)
Heat Treating Nonferrous Materials
49(1)
Mechanical Forming and Hardening
50(2)
Coatings and Surface Treatments
52(4)
Galvanic Action
52(1)
Electroplating
53(1)
Electroless Plating
54(1)
Anodizing
55(1)
Plasma-Sprayed Coatings
55(1)
Chemical Coatings
55(1)
General Properties of Metals
56(9)
Cast Iron
56(1)
Cast Steels
57(1)
Wrought Steels
57(1)
Steel Numbering Systems
58(3)
Aluminum
61(2)
Titanium
63(1)
Magnesium
64(1)
Copper Alloys
64(1)
General Properties of Nonmetals
65(3)
Polymers
66(1)
Ceramics
67(1)
Composites
67(1)
Summary
68(3)
Important Equations Used in this Chapter
69(2)
References
71(1)
Bibliography
71(1)
Problems
72(3)
Load Determination
75(68)
Introduction
75(1)
Loading Classes
75(3)
Free-body Diagrams
78(1)
Load Analysis
78(3)
Three-Dimensional Analysis
79(1)
Two-Dimensional Analysis
80(1)
Static Load Analysis
81(1)
Two-Dimensional,Static Loading Case Studies
81(16)
Bicycle Brake Lever Loading Analysis
81(6)
Hand-Operated Crimping-Tool Loading Analysis
87(4)
Automobile Scissors-jack Loading Analysis
91(6)
Three-Dimensional, Static Loading Case Study
97(5)
Bicycle Brake Arm Loading Analysis
98(4)
Dynamic Loading Case Study
102(4)
Fourbar Linkage Loading Analysis
103(3)
Vibration Loading
106(5)
Natural Frequency
107(2)
Dynamic Forces
109(1)
Fourbar Linkage Dynamic Loading Measurement
110(1)
Impact Loading
111(5)
Energy Method
112(3)
Example 3-1
115(1)
Beam Loading
116(14)
Shear and Moment
117(1)
Singularity Functions
118(3)
Example 3-2A
121(2)
Example 3-2B
123(2)
Example 3-3A
125(1)
Example 3-3B
126(1)
Example 3-4
127(2)
Superposition
129(1)
Summary
130(2)
Important Equations Used in this Chapter
131(1)
References
132(1)
Bibliography
133(1)
Problems
133(10)
Stress, Strain, and Deflection
143(110)
Introduction
143(1)
Stress
143(4)
Strain
147(1)
Principal Stresses
147(3)
Plane Stress and Planme Strain
150(1)
Plane Stress
150(1)
Plane Strain
151(1)
Mohr's Circles
151(5)
Example 4-1
152(2)
Example 4-2
154(1)
Example 4-3
155(1)
Applied Versus Principal Stresses
156(1)
Axial Tension
157(1)
Direct Shear Stress, Bearing Stress, and Tearout
158(2)
Direct Shear
158(1)
Direct Bearing
159(1)
Tearout Failure
159(1)
Beams and Bending Stresses
160(8)
Beams in Pure Bending
161(3)
Shear Due to Transverse Loading
164(4)
Deflection in Beams
168(13)
Deflection by Singularity Functions
170(1)
Example 4-4
170(3)
Example 4-5
173(2)
Example 4-6
175(3)
Statically Indeterminate Beams
178(1)
Example 4-7
178(3)
Castigliano's Method
181(2)
Deflection by Castigliano's Method
182(1)
Finding Redundant Reactions with Castigliano's Method
182(1)
Torsion
183(6)
Example 4-8
185(4)
Combined Stresses
189(3)
Example 4-9
189(3)
Spring Rates
192(1)
Stress Concentration
193(7)
Stress Concentration Under Static Loading
195(1)
Stress Concentration Under Dynamic Loading
195(1)
Determining Geometric Stress-Concentration Factors
196(2)
Designing to Avoid Stress Concentrations
198(2)
Axial Compression - Columns
200(12)
Slenderness Ratio
200(1)
Short Columns
201(1)
Long Columns
201(1)
End Conditions
202(2)
Intermediate Columns
204(2)
Example 4-10
206(2)
Eccentric Columns
208(4)
Stresses in Cylinders
212(2)
Thick-Walled Cylinders
212(1)
Thin-Walled Cylinders
213(1)
Case Studies in Static Stress and Deflection Analysis
214(17)
Bicycle Brake Lever Stress and Deflection Analysis
214(4)
Crimping-Tool Stress and Deflection Analysis
218(5)
Automobile Scissors-Jack Stress and Deflection Analysis
223(4)
Bicycle Brake-Arm Stress Analysis
227(4)
Summary
231(7)
Important Equations Used in this Chapter
234(4)
References
238(1)
Bibliography
238(1)
Problems
239(14)
Static Failure Theories
253(64)
Introduction
253(3)
Failure of Ductile Materials Under Static Loading
256(13)
The von Mises-Hencky or Distortion-Energy Theory
256(7)
The Maximum Shear-Stress Theory
263(2)
Maximum Normal-Stress Theory
265(1)
Comparison of Experimental Data with Failure Theories
266(1)
Example 5-1
267(2)
Failure of Brittle Materials Under Static Loading
269(8)
Even and Uneven Materials
270(1)
The coulomb-Mohr Theory
271(1)
The Modified-Mohr Theory
272(2)
Example 5-2
274(3)
Fracture Mechanics
277(8)
Fracture-Mechanics Theory
280(2)
Fracture Toughness Kc
282(2)
Example 5-3
284(1)
Using The Static-Loading Failure Theories
285(2)
Case Studies in Static Failure Analysis
287(12)
Bicycle Brake Lever Failure Analysis
287(3)
Crimping-Tool Failure Analysis
290(3)
Automobile Scissors-jack Failure Analysis
293(3)
Bicycle Brake Arm Factors of Safety
296(3)
Summary
299(3)
Important Equations Used in this Chapter
301(1)
References
302(1)
Bibliography
303(1)
Problems
304(13)
Fatigue Failure Theories
317(126)
Introduction
317(2)
History of Fatigue Failure
317(2)
Mechanism of Fatigue Failure
319(5)
Crack-Initiation Stage
321(1)
Crack Propagation Stage
321(2)
Fracture
323(1)
Fatigue-Failure Models
324(2)
Fatigue Regimes
324(1)
The Stress-Life Approach
324(2)
The Strain-Life Approach
326(1)
The LEFM Approach
326(1)
Machine-Design Considerations
326(2)
Fatigue Loads
328(3)
Rotating Mechinery Loading
328(1)
Service Equipment Loading
329(2)
Measuring Fatigue Failure Criteria
331(14)
Fully Reversed Stresses
331(7)
Combined Mean and Alternating Stress
338(2)
Fracture-Mechanics Criteria
340(4)
Testing Actual Assemblies
344(1)
Estimating Fatigue Failure Criteria
345(16)
Estimating the Theoretical Fatigue Strength or Endurance Limit
345(1)
Correction Factors to the Theoretical Fatigue Strength
346(9)
Calculating the Corrected Fatigue Strength
355(1)
Creating Estimated S-N Diagrams
355(2)
Example 6-1
357(2)
Example 6-2
359(2)
Notches and Stress Concentrations
361(5)
Notch Sensitivity
361(2)
Exmaple 6-3
363(3)
Residual Stresses
366(5)
Designing for High-Cycle Fatigue
371(1)
Designing for Fully Reversed Uniaxial Stresses
372(8)
Design Steps for Fully Reversed Stresses with Uniaxial Loading:
372(2)
Example 6-4
374(6)
Designing for Fluctuating Uniaxial Stresses
380(18)
Creating the Modified-Goodman Diagram
381(3)
Applying Stress-Concentration Effects with Fluctuating Stresses
384(2)
Determining the Safety Factor with Fluctuating Stresses
386(3)
Design Steps for Fluctuating Stresses
389(2)
Example 6-5
391(7)
Designing for Multiaxial Stresses in Fatigue
398(5)
Frequency and Phase Relationships
398(1)
Fully Reversed Simple Multiaxial Stresses
399(1)
Fluctuating Simple Multiaxial Stresses
399(2)
Complex Multiaxial Stresses
401(2)
A General Approach to High-Cycle Fatigue Design
403(5)
Example 6-6
404(4)
A Case Study in Fatigue Design
408(14)
Redesign of a Failed Laybar for a Water-Jet Power Loom
409(13)
Summary
422(5)
Important Equations Used in this Chapter
423(4)
References
427(2)
Bibliography
429(1)
Problems
430(13)
Surface Failure
443(66)
Introduction
443(2)
Surface Geometry
445(1)
Mating Surfaces
446(2)
Friction
448(3)
Effect of Roughness on Friction
450(1)
Effect of Velocity on Friction
450(1)
Rolling Friction
450(1)
Effect of Lubricant on Friction
450(1)
Adhesive Wear
451(4)
The Adhesive Wear Coefficient
454(1)
Abrasive Wear
455(4)
Abrasive Materials
458(1)
Abrasion-Resistant Materials
458(1)
Corrosion Wear
459(3)
Corrosion Fatigue
461(1)
Fretting Corrosion
461(1)
Surface Fatigue
462(3)
Spherical Contact
465(6)
Contact Pressure and Contact Patch in Spherical Contact
465(2)
Static Stress Distributions in Spherical Contact
467(2)
Example 7-1
469(2)
Cylindrical Contact
471(4)
Contact Pressure and Contact Patch in Parallel Cylindrical Contact
471(1)
Static Stress Distributions in Parallel Cylindrical Contact
472(2)
Example 7-2
474(1)
General Contact
475(5)
Contact Pressure and Contact Patch in General Contact
475(1)
Stress Distributions in General Contact
476(1)
Example 7-3
477(3)
Dynamic Contact Stresses
480(8)
Effect of a Sliding Component on Contact Stresses
480(6)
Example 7-4
486(2)
Surface Fatigue Failure Models---Dynamic Contact
488(4)
Surface Fatigue Strength
492(6)
Example 7-5
497(1)
Summary
498(4)
Designing to Avoid Surface Failure
499(1)
Important Equations Used in this Chapter
499(3)
References
502(2)
Problems
504(5)
Part II Machine Design 509(468)
Design Case Studies
511(28)
Introduction
511(1)
A Portable Air Compressor
512(4)
Preliminary Design of a Compressor Drive Train
514(2)
A Hay-Bale Lifter
516(4)
Preliminary Design of a Winch Lift
516(4)
A Cam-Testing Machine
520(6)
Preliminary Design of a Cam Dynamic Test Fixture (CDTF)
521(5)
Summary
526(1)
References
527(1)
Design Projects
527(12)
Shafts, Keys, and Couplings
539(80)
Introduction
539(1)
Shaft Loads
539(2)
Attachments and Stress Concentrations
541(2)
Shaft Materials
543(1)
Shaft Power
544(1)
Shaft Loads
544(1)
Shaft Stresses
545(1)
Shaft Failure in Combined Loading
546(1)
Shaft Design
546(12)
General Considerations
547(1)
Design for Fully Reversed Bending and Steady Torsion
548(2)
Design for Fluctuating Bending and Fluctuating Torsion
550(1)
Example 9-1
551(5)
Example 9-2
556(2)
Shaft Deflection
558(4)
Shafts as Beams
558(1)
Shafts as Torsion Bars
559(1)
Example 9-3
560(2)
Keys and Keyways
562(9)
Parallel Keys
562(2)
Tapered Keys
564(1)
Woodruff Keys
564(1)
Stresses in Keys
564(1)
Key Materials
565(1)
Key Design
566(1)
Stress Concentrations in Keyways
566(1)
Example 9-4
567(4)
Splines
571(2)
Interference Fits
573(6)
Stresses in Interference Fits
573(1)
Stress Concentration in Interference Fits
574(1)
Fretting Corrosion
575(1)
Example 9-5
576(3)
Flywheel Design
579(9)
Energy Variation in a Rotating System
580(1)
Example 9-6
581(2)
Determining the Flywheel Inertia
583(2)
Stresses in Flywheels
585(1)
Failure Criteria
586(1)
Example 9-7
586(2)
Critical Speeds of Shafts
588(12)
Lateral Vibration of Shafts and Beams---Rayleigh's Method
591(2)
Shaft Whirl
593(2)
Torsional Vibration
595(1)
Two Disks on a Common Shaft
596(1)
Multiple Disks on a Common Shaft
597(1)
Controlling Torsional Vibrations
598(1)
Example 9-8
598(2)
Couplings
600(4)
Rigid Couplings
601(1)
Compliant Couplings
602(2)
Case Study
604(5)
Designing Driveshafts for a Portable Air Compressor
604(1)
Preliminary Design of Shafts for a Compressor Drive Train
605(4)
Summary
609(2)
Important Equations Used in this Chapter
610(1)
References
611(1)
Problems
612(7)
Bearings and Lubrication
619(64)
Introduction
619(3)
A Caveat
621(1)
Lubricants
622(2)
Viscosity
624(1)
Types of Lubrication
624(5)
Full-Film Lubrication
626(3)
Boundary Lubrication
629(1)
Material Combinations in Sliding Bearings
629(2)
Hydrodynamic Lubrication Theory
631(8)
Petroff's Equation for No-Load Torque
631(1)
Reynolds' Equation for Eccentric Journal Bearings
632(6)
Torque and Power Losses in Journal Bearings
638(1)
Design of Hydrodynamic Bearings
639(7)
Design Load Factor---The Ocvirk Number
640(1)
Design Procedures
640(3)
Example 10-1
643(3)
Nonconforming Contacts
646(7)
Example 10-2
651(2)
Rolling-element bearings
653(6)
Comparison of Rolling and Sliding Bearings
654(1)
Types of Rolling-Element Bearings
655(4)
Failure of Rolling-element bearings
659(1)
Selection of Rolling-element bearings
659(7)
Basic Dynamic Load Rating C
659(1)
Basic Static Load Rating CO
660(1)
Combined Radial and Thrust Loads
661(1)
Calculation Procedures
661(3)
Example 10-3
664(1)
Example 10-4
665(1)
Bearing Mounting Details
666(1)
Special Bearings
667(1)
Case Study
668(4)
Design of Hydrodynamic Bearings for a Cam Test Fixture
669(3)
Summary
672(4)
Important Equations Used in this Chapter
673(3)
References
676(1)
Problems
677(6)
Spur Gears
683(72)
Introduction
683(2)
Gear Tooth Theory
685(7)
The Fundamental Law of Gearing
685(2)
The Involute Tooth Form
687(1)
Pressure Angle
688(1)
Mesh Geometry
688(1)
Rack and Pinion
689(1)
Changing Center Distance
690(1)
Backlash
691(1)
Relative Tooth Motion
692(1)
Gear Tooth Nomenclature
692(2)
Interference and Undercutting
694(3)
Unequal-Addendum Tooth Forms
696(1)
Contact Ratio
697(3)
Example 11-1
698(2)
Gear Trains
700(6)
Simple Gear Trains
700(1)
Compound Gear Trains
700(1)
Reverted Compound Trains
701(1)
Example 11-2
702(1)
Epicyclic or Planetary Gear Trains
703(2)
Example 11-3
705(1)
Gear Manufacturing
706(4)
Forming Gear Teeth
706(1)
Machining
707(1)
Roughing Processes
707(2)
Finishing Processes
709(1)
Gear Quality
709(1)
Loading on Spur Gears
710(3)
Example 11-4
712(1)
Stresses in Spur Gears
713(15)
Bending Stresses
713(9)
Example 11-5
722(1)
Surface Stresses
723(3)
Example 11-6
726(2)
Gear Materials
728(11)
Material Strengths
729(1)
AGMA Bending-Fatigue Strengths for Gear Materials
730(3)
AGMA Surface-Fatigue Strengths for Gear Materials
733(2)
Example 11-7
735(4)
Lubrication of Gearing
739(1)
Design of Spur Gears
739(2)
Case Study
741(6)
Design of Spur Gears for a Compressor Drive Train
741(6)
Summary
747(2)
Important Equations Used in this Chapter
748(1)
References
749(1)
Problems
749(6)
Helical, Bevel, and Worm Gears
755(42)
Introduction
755(1)
Helical Gears
755(14)
Helical Gear Geometry
758(1)
Helical Gear Forces
759(1)
Virtual Number of Teeth
759(1)
Contact Ratios
760(1)
Stresses in Helical Gears
761(3)
Example 12-1
764(5)
Bevel Gears
769(9)
Bevel Gear Geometry and Nomenclature
770(1)
Bevel Gear Mounting
771(1)
Forces on Bevel Gears
771(1)
Stresses in Bevel Gears
772(1)
Example 12-2
773(5)
Wormsets
778(6)
Materials for Wormsets
779(1)
Lubrication in wormsets
780(1)
Forces in Wormsets
780(1)
Wormset Geometry
780(1)
Rating Methods
781(2)
A Design Procedure for Wormsets
783(1)
Case Study
784(1)
Design of a Wormset Speed Reducer for a Winch Lift
784(1)
Repeated
785(2)
Summary
787(5)
Important Equations Used in this Chapter
789(3)
References
792(1)
Problems
793(4)
Spring Design
797(78)
Introduction
797(1)
Spring Rate
797(3)
Spring Configurations
800(2)
Spring Materials
802(6)
Spring Wire
803(2)
Flat Spring Stock
805(3)
Helical Compression Springs
808(13)
Spring Lengths
808(1)
End Details
809(1)
Active Coils
809(1)
Spring Index
810(1)
Spring Deflection
810(1)
Spring Rate
810(1)
Stresses in Helical Compression Spring Coils
811(1)
Residual Stresses
812(1)
Buckling of Compression Springs
813(1)
Compression-Spring Surge
814(1)
Allowable Strengths for Compression Springs
815(2)
The Torsional-Shear S-N Diagram for Spring Wire
817(1)
Example 13-1
817(1)
The Modified-Goodman Diagram for Spring Wire
818(1)
Example 13-2
819(2)
Designing Helical Compression Springs for Static Loading
821(5)
Example 13-3
822(4)
Designing Helical Compression Springs for Fatigue Loading
826(8)
Example 13-4
829(5)
Helical Extension Springs
834(12)
Active Coils in Extension Springs
834(1)
Spring Rate of Extension Springs
835(1)
Spring Index of Extension Springs
835(1)
Coil Preload in Extension Springs
835(1)
Deflection of Extension Springs
835(1)
Coil Stresses in Extension Springs
836(1)
End Stresses in Extension Springs
836(1)
Surging in Extension Springs
837(1)
Material Strengths for Extension Springs
837(1)
Design of Helical Extension Springs
837(2)
Example 13-5
839(7)
Helical Torsion Springs
846(8)
Terminology for Torsion Springs
847(1)
Number of Coils in Torsion Springs
847(1)
Deflection of Torsion Springs
847(1)
Spring Rate of Torsion Springs
848(1)
Coil Closure
848(1)
Coil Stresses in Torsion Springs
848(1)
Material Parameters for Torsion Springs
849(1)
Safety Factors for Torsion Springs
850(1)
Designing Helical Torsion Springs
851(1)
Example 13-6
851(3)
Belleville Spring Washers
854(7)
Load-Deflection Function for Belleville Washers
856(1)
Stresses in Belleville Washers
857(1)
Static Loading of Belleville Washers
857(1)
Dynamic Loading
858(1)
Stacking Springs
859(1)
Designing Belleville Springs
859(1)
Example 13-7
859(2)
Case Studies
861(5)
Designing a Return Spring for a Cam-Testing Machine
862(1)
Design of a Return-Spring for a Cam-Follower Arm
862(4)
Summary
866(4)
Important Equations Used in this Chapter
867(3)
References
870(1)
Problems
871(4)
Screws and Fasteners
875(72)
Introduction
875(2)
Standard Thread Forms
877(3)
Tensile Stress Area
879(1)
Standard Thread Dimensions
880(1)
Power Screws
880(12)
Square, Acme, and Buttress Threads
880(2)
Power Screw Application
882(1)
Power Screw Force and Torque Analysis
883(4)
Friction Coefficients
887(1)
Self-Locking and Back-Driving of Power Screws
887(1)
Screw Efficiency
888(1)
Ball Screws
889(1)
Example 14-1
890(2)
Stresses in Threads
892(2)
Axial Stress
892(1)
Shear Stress
893(1)
Torsional Stress
894(1)
Types of Screw Fasteners
894(4)
Classification by Intended Use
894(1)
Classification by Thread Type
895(1)
Classification by Head Style
895(2)
Nuts and Washers
897(1)
Manufacturing Fasteners
898(2)
Strengths of Standard Bolts and Machine Screws
900(1)
Preloaded Fasteners in Tension
900(15)
Preloaded Bolts Under Static Loading
903(3)
Example 14-2
906(3)
Preloaded Bolts Under Dynamic Loading
909(1)
Example 14-3
910(5)
Determining the Joint Stiffness Factor
915(7)
Gasketed Joints
917(1)
Example 14-4
918(4)
Controlling Preload
922(3)
The Turn-of-the-Nut Method
923(1)
Torque-Limited Fasteners
923(1)
Load-Indicating Washers
923(1)
Torsional Stress Due to Torquing of Bolts
924(1)
Example 14-5
924(1)
Fasteners in Shear
925(7)
Dowel Pins
927(2)
Centroids of Fastener Groups
929(1)
Determining Shear Loads on Fasteners
929(2)
Example 14-6
931(1)
Case Studies
932(5)
Designing Headbolts for an Air Compressor
932(1)
Design of the Headbolts for an Air Compressor
932(5)
Summary
937(3)
Important Equations Used in this Chapter
938(2)
References
940(1)
Bibliography
941(1)
Problems
941(6)
Clutches and Brakes
947(30)
Introduction
947(2)
Types of Brakes and Clutches
949(6)
Clutch/Brake Selection and Specification
955(1)
Clutch and Brake Materials
956(1)
Disk Clutches
956(4)
Uniform Pressure
957(1)
Uniform Wear
958(1)
Example 15-1
959(1)
Disk Brakes
960(1)
Drum Brakes
961(8)
Short-Shoe External Drum Brakes
962(1)
Example 15-2
963(1)
Long-Shoe External Drum Brakes
964(3)
Example 15-3
967(2)
Long-Shoe Internal Drum Brakes
969(1)
Summary
969(3)
Important Equations Used in this Chapter
971(1)
References
972(1)
Bibliography
972(1)
Problems
973(4)
Appendix A Cross-Sectional Properties 977(2)
Appendix B Mass Properties 979(2)
Appendix C Material Properties 981(8)
Appendix D Beam Tables 989(4)
Appendix E Stress Concentration Factors 993(8)
Appendix F Introduction to TKSolver 1001(26)
Appendix G Introduction to Mathcad 1027(18)
Appendix H Answers to Selected Problems 1045(10)
Appendix I List of Software Included on CD-ROM 1055(12)
Index 1067


Please wait while the item is added to your cart...