MasteringEngineering with Pearson eText -- Access Card -- Introduction to Materials Science

  • ISBN13:


  • ISBN10:


  • Edition: 1st
  • Format: Nonspecific Binding
  • Copyright: 5/16/2013
  • Publisher: Pearson

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $59!
    Your order must be $59 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $134.48 Save up to $40.34
  • Rent Book $94.14
    Add to Cart Free Shipping


Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.


ALERT: Before you purchase, check with your instructor or review your course syllabus to ensure that you select the correct ISBN. Several versions of Pearson's MyLab & Mastering products exist for each title, including customized versions for individual schools, and registrations are not transferable. In addition, you may need a CourseID, provided by your instructor, to register for and use Pearson's MyLab & Mastering products.



Access codes for Pearson's MyLab & Mastering products may not be included when purchasing or renting from companies other than Pearson; check with the seller before completing your purchase.


Used or rental books

If you rent or purchase a used book with an access code, the access code may have been redeemed previously and you may have to purchase a new access code.


Access codes

Access codes that are purchased from sellers other than Pearson carry a higher risk of being either the wrong ISBN or a previously redeemed code. Check with the seller prior to purchase.


-- For students taking the Materials Science course. This book is also suitable for professionals seeking a guided inquiry approach to materials science.


This unique book is designed to serve as an active learning tool that uses carefully selected information and guided inquiry questions. Guided inquiry helps readers reach true understanding of concepts as they develop greater ownership over the material presented. First, background information or data is presented. Then, concept invention questions lead the students to construct their own understanding of the fundamental concepts represented. Finally, application questions provide the reader with practice in solving problems using the concepts that they have derived from their own valid conclusions. 


Table of Contents


Part I: Introduction

Chapter 1: What is Guided Inquiry?

1.1 First Law of Thermodynamics

1.2 Active Learning

Chapter 2: What is Materials Science and Engineering?

2.1 Types of Materials

2.2 The MSE Triangle

Part II: Atomic and Molecular Structure of Materials

Chapter 3: Bonding

3.1 Electronegativity

3.2 Primary Bonds

3.3 Non-Bonding Interactions

Chapter 4: Atomic Arrangements in Solids

4.1 Crystalline and Amorphous Materials

4.2 Unit Cells

4.3 Miller Indices

4.4 Planes and Directions in Crystals

4.5 Crystalline Defects

4.6 Ceramic Crystal Structures

4.7 Defects in Ceramic Crystals

4.8 Determining Crystal Structure: Diffraction

Chapter 5: The Structure of Polymers

5.1 Molecular Structure

5.2 Molecular Weight

5.3 Polymer Crystals

5.4 The Glass Transition

Chapter 6: Microstructure: Phase Diagrams

6.1 Defining Mixtures

6.2 Isomorphous Binary Phase Diagrams – The Lever Rule

6.3 Isomorphous Binary Phase Diagrams – Microstructure

6.4 Eutectic Phase Diagrams – Microstructure

6.5 Eutectic Phase Diagrams – Microconstituents

6.6 Peritectic Phase Diagrams

6.7 Intermetallic and Ceramic Phase Diagrams 

Chapter 7: Diffusion

7.1 Diffusion Mechanisms

7.2 Diffusion Calculations: Fick’s Laws

Chapter 8: Microstructure: Kinetics

8.1 Nucleation and Growth

8.2 Heterogeneous Nucleation

8.3 Equilibrium vs. Nonequilibrium Cooling

8.4 Isothermal Transformation Diagrams

8.5 Continuous Cooling Transformation Diagrams

Part III: Properties and Uses of Materials

Chapter 9: Mechanical Behavior

9.1 Stress-Strain Curves

9.2 Bond-Force and Bond-Energy Curves

9.3 Strength of Metals

9.4 Strengthening Mechanisms for Metals

9.5 Structure-Property-Processing Relationships in Steel

9.6 Polymer Properties

9.7 Properties of Ceramics

9.8 Fracture

9.9 Fatigue

9.10 Hardness

9.11 Viscoelasticity

9.12 Composites

Chapter 10: Materials in the Environment

10.1 Electrochemistry: How Does a Battery Work?

10.2 Corrosion of Metals

10.3 Oxide Formation

10.4 Degradation of Polymers

Chapter 11: Electronic Behavior

11.1 Band Structure of Materials

11.2 Electronic Properties

11.3 Conductors

11.4 Semiconductors

11.5 Solid-State Devices

Chapter 12: Thermal Behavior

12.1 Heat Capacity

12.2 Thermal Expansion

12.3 Thermal Conductivity

Chapter 13: Materials Selection and Design

13.1 Ranking Procedures

13.2 Ashby Plots

Rewards Program

Write a Review