9781577664253

Mechanical Behavior of Materials

by
  • ISBN13:

    9781577664253

  • ISBN10:

    1577664256

  • Edition: 2nd
  • Format: Hardcover
  • Copyright: 12/1/2005
  • Publisher: Waveland Pr Inc

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $59!
    Your order must be $59 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
  • We Buy This Book Back!
    In-Store Credit: $21.00
    Check/Direct Deposit: $20.00
List Price: $109.14 Save up to $44.36
  • Rent Book $65.48
    Add to Cart Free Shipping

    TERM
    PRICE
    DUE

Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Table of Contents

1 Overview of Mechanical Behavior 1(43)
1.1 Introduction
1(1)
1.2 Elastic Deformation
2(3)
1.3 Permanent Deformation
5(24)
A. The Tension Test
B. Strain-Rate Sensitivity
C. Yielding Under Multiaxial Loading Conditions
D. Mohr's Circle
E. The Hardness Test
F. The Torsion Test
1.4 Fracture
29(8)
A. Fracture Toughness
B. Tensile Fracture
C. Creep Fracture
D. Fatigue Fracture
E. Embrittlement
1.5 Summary
37(7)
2 Elastic Behavior 44(41)
2.1 Introduction
44(1)
2.2 Range of Elastic Moduli
45(2)
2.3 Additional Elastic Properties
47(3)
2.4 Basis for Linear Elasticity
50(6)
2.5 Anisotropic Linear Elasticity
56(5)
2.6 Rubber Elasticity
61(4)
2.7 Polymer Elasticity and Viscoelasticity
65(9)
2.8 Mechanical Damping
74(4)
2.9 Summary
78(7)
3 Dislocations 85(55)
3.1 Introduction
85(1)
3.2 The Yield Strength of a Perfect Crystal
86(2)
3.3 The Edge Dislocation
88(9)
A. Slip by Edge Dislocation Motion
B. Climb of Edge Dislocations
C. Topological Considerations
D. Motion of Edge Dislocations Containing Jogs
3.4 Screw and Mixed Dislocations
97(6)
A. Slip by Screw Dislocation Motion
B. Slip by Mixed Dislocation Motion
3.5 Twinning
103(3)
3.6 Properties of Dislocations
106(10)
A. Dislocation Stress Fields
B. Dislocation Energies
C. Forces Between Dislocations
D. Kinks in Dislocations
E. Dislocation Velocities
3.7 Dislocation Geometry and Crystal Structure
116(7)
A. Slip Systems
B. Partial Dislocations
C. Dislocations in Nonmetallic Materials
D. Slip and Dislocations in Ordered Structures
3.8 Intersection of Moving Dislocations
123(9)
A. Jogs on Dislocations
B. Dislocation Multiplication
C. Dislocation Con Arrangements at High Dislocation Densities
3.9 Dislocation Density and Macroscopic Strain
132(1)
3.10 Summary
133(7)
4 Plastic Deformation in Single and Polycrystalline Materials 140(35)
4.1 Introduction
140(1)
4.2 Initiation of Plastic Flow in Single Crystals
141(4)
4.3 Stress-Strain Behavior of Single Crystals
145(11)
4.4 Plastic Flow in Polycrystals
156(6)
4.5 Plastic-Flow Behavior and Material Class
162(2)
4.6 Geometrically Necessary Dislocations
164(4)
4.7 Summary
168(7)
5 Strengthening of Crystalline Materials 175(69)
5.1 Introduction
175(1)
5.2 General Description of Strengthening
176(3)
5.3 Work Hardening
179(2)
5.4 Boundary Strengthening
181(5)
5.5 Solid-Solution Strengthening
186(10)
5.6 Particle Hardening
196(14)
A. Deforming Particles
B. Nondeforming Particles
C. The Transition from Cutting to Bowing and the Maximum Particle Hardening
5.7 Strain-Gradient Hardening
210(9)
5.8 Deformation of Two-Phase Aggregates
219(2)
5.9 Strength, Microstructure, and Processing: Case Studies
221(10)
A. Patented Steel Wire
B. Steel Martensites
C. Ausformed Steels
D. Microalloyed Steels
E. Precipitation-Hardened Aluminum Alloys
5.10 Summary
231(13)
6 Composite Materials 244(49)
6.1 Introduction
244(3)
6.2 Basic Principles of Reinforcement
247(3)
6.3 Particle Reinforcement
250(1)
6.4 Reinforcement with Aligned Continuous Fibers
251(6)
6.5 Reinforcement with Discontinuous Fibers
257(6)
6.6 Fiber Orientation Effects
263(5)
6.7 Statistical Failure of Composites
268(6)
6.8 Strain-Rate Effects
274(4)
6.9 Microscopic Effects
278(2)
6.10 Reinforcement of Brittle Matrices
280(3)
6.11 Modern Composite Materials
283(4)
A. Fibers
B. Matrices
6.12 Summary
287(6)
7 High-Temperature Deformation of Crystalline Materials 293(61)
7.1 Introduction
293(1)
7.2 Phenomenological Description of Creep
294(3)
7.3 Creep Mechanisms
297(17)
A. Dislocation Glide at Low Temperature
B. Diffusional Flow Creep Mechanisms
C. Creep Mechanisms Involving Dislocation and Diffusional Flow
D. Creep in Two-Phase Alloys
E. Independent and Sequential Processes
F. Summary
7.4 Deformation Mechanism Maps
314(4)
7.5 Materials Aspects of Creep Design
318(6)
A. Creep Resistance as Related to Material Properties and Structure
B. Case Studies
7.6 Engineering Estimates of Creep Behavior
324(1)
A. Strain-Rate Sensitivity and Superplastic Behavior
B. Experimental Observations of Superplasticity
C. Mechanisms of Superplasticity
7.7 Superplasticity
325(15)
7.8 Hot Working of Metals
340(5)
A. Description of Hot Working
B. Dynamic Recovery and Recrystallization
7.9 Summary
345(9)
8 Deformation of Noncrystalline Materials 354(50)
8.1 Introduction
354(1)
8.2 Crystalline versus Noncrystalline Structures
355(4)
8.3 Viscosity
359(4)
8.4 The Deformation Behavior of Inorganic Glasses
363(5)
8.5 Deformation of Metallic Glasses
368(6)
8.6 Deformation of Polymeric Materials
374(24)
A. Polymer Chemistry and Structure
B. Deformation of Noncrystalline Polymers
C. Deformation of Crystalline Polymers
D. Structure-Property Relationships and Use of Polymers
8.7 Summary
398(6)
9 Fracture Mechanics 404(50)
9.1 Introduction
405(3)
9.2 The Theoretical Strength of a Solid
408(3)
9.3 Crack-Initiated Fracture
411(7)
9.4 Fracture Mechanics
418(15)
A. Design Philosophy
B. Crack Propagation Modes
C. Plane Stress and Plane Strain
D. Test Methods
E. Case Studies and Examples
9.5 Fracture Toughness and Material Class
433(3)
9.6 The Charpy Impact Test
436(7)
9.7 Fracture of Brittle Nonmetallics
443(5)
A. Ceramic "Strengths"
B. The Statistics of Brittle Fracture
9.8 Summary
448(6)
10 Toughening Mechanisms and the Physics of Fracture 454(68)
10.1 Introduction
454(1)
10.2 Toughening in Metals
455(6)
10.3 Toughening in Ceramics
461(11)
A. Thermal Stresses
B. Toughening Due to Crack Deflection and Geometry
C. Microcrack Toughening
D. Transformation Toughening
E. Crack Bridging
10.4 Toughening in Composites
472(4)
A. Crack Bridging with Brittle Fibers
B. Crack Bridging with a Ductile Phase
10.5 Toughening in Polymers
476(2)
10.6 Types of Low-Temperature Tensile Fracture
478(5)
10.7 The Relation Among Bonding, Crystal Structure, and Fracture
483(9)
A. Fracture of Face-Centered Cubic Metals
B. Fracture of Body-Centered Cubic Transition Metals
C. Fracture of the Hexagonal Close-Packed Metals
D. Fracture of the Alkali Halides
E. Fracture of the Refractory Oxides
F. Fracture of Covalent Solids
G. Synopsis
10.8 Mode II Brittle Fracture
492(8)
A. Mode II Fracture Initiated by Slip Incompatibility
B. Mode II Fracture in bcc Transition Metals
10.9 Mode III Brittle Fracture
500(6)
10.10 Ductile Fracture
506(6)
10.11 Summary
512(10)
11 High-Temperature Fracture 522(44)
11.1 Introduction
522(1)
11.2 High-Temperature Fracture Modes
523(5)
11.3 High-Temperature Fracture-Mechanism Maps
528(6)
11.4 Intergranular Creep Fracture
534(17)
A. Overview
B. Void Nucleation
C. Void Growth
11.5 Design and Materials Considerations
551(3)
A. Design Considerations
B. Materials Considerations
11.6 Failure in Superplastic Materials
554(5)
11.7 Summary
559(7)
12 Fatigue of Engineering Materials 566(64)
12.1 Introduction
567(1)
12.2 Characteristics of Fatigue Fracture
568(6)
12.3 Evaluation of Fatigue Resistance
574(10)
12.4 Fatigue-Crack Growth Rates
584(5)
12.5 Design Against Fatigue
589(9)
12.6 Cyclic Stress-Strain Behavior
598(4)
12.7 Creep-Fatigue Interactions
602(4)
12.8 Polymeric Fatigue
606(14)
A. Stress (Strain) Amplitude and Polymeric Fatigue Life
B. Fatigue-Crack Growth
C. Polymeric Cyclical Stress-Strain Behavior
D. Temperature Effects
12.9 Fatigue of Composites
620(1)
12.10 Summary
621(9)
13 Embrittlement 630(56)
13.1 Introduction
630(3)
13.2 Metal Embrittlement
633(8)
A. Characteristics
B. Mechanisms
13.3 Stress-Corrosion Cracking
641(11)
A. Characteristics
B. Mechanisms
C. Corrosion Fatigue
13.4 Hydrogen Embrittlement
652(6)
A. Characteristics
B. Mechanisms
13.5 Impurity-Atom Embrittlement
658(6)
A. Characteristics
B. Mechanisms
13.6 Radiation Damage
664(6)
A. Neutron Interactions
B. Radiation Embrittlement
C. Swelling
D. Radiation Creep
13.7 Embrittlement of Inorganic Glasses and Ceramics
670(5)
13.8 Polymer Embrittlement
675(4)
13.9 Summary
679(7)
14 Cellular Solids 686
14.1 Introduction
686(2)
14.2 The Geometries and Densities of Cellular Solids
688(2)
14.3 Compressive Behavior of Cellular Solids
690(8)
A. Overview
B. Compressive Elastic Behavior of Cellular Solids
C. The Plateau Stress
D. Densification
E. Synopsis
14.4 Energy Absorption in Cellular Solids
698(7)
14.5 Sandwich Panels
705(8)
A. Elastic Properties of Sandwich Panels
B. Sandwich Panel Failure Modes
14.6 Summary
713

Rewards Program

Write a Review