did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780136022305

Mechanics of Materials

by
  • ISBN13:

    9780136022305

  • ISBN10:

    0136022308

  • Edition: 8th
  • Format: Hardcover
  • Copyright: 2010-03-22
  • Publisher: Prentice Hall
  • View Upgraded Edition

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $279.99 Save up to $70.00
  • Buy Used
    $209.99
    Add to Cart Free Shipping Icon Free Shipping

    USUALLY SHIPS IN 2-4 BUSINESS DAYS

Supplemental Materials

What is included with this book?

Summary

Mechanics of Materials, 8e, is intended for undergraduate Mechanics of Materials courses in Mechanical, Civil, and Aerospace Engineering departments.

Containing Hibbeler’s hallmark student-oriented features, this text is in four-color with a photorealistic art program designed to help students visualize difficult concepts. A clear, concise writing style and more examples than any other text further contribute to students’ ability to master the material.

Click here for the Video Solutions that accompany this book. Developed by Professor Edward Berger, University of Virginia, these are complete, step-by-step solution walkthroughs of representative homework problems from each section of the text.

This clear, comprehensive presentation discusses both the theory and applications of mechanics of materials. It examines the physical behavior of materials under load, then proceeds to model this behavior to development theory. This book is in four-color with a photorealistic art program designed to help readers visualize difficult concepts. A clear, concise writing style and more examples than any other book further contribute to readers' ability to master the material.

Stress; Strain; Mechanical Properties of Materials; Axial Load; Torsion; Bending; Transverse Shear; Combined Loadings; Stress Transformation; Strain Transformation; Design of Beams and Shafts; Deflection of Beams and Shafts; Buckling of Columns; Energy Methods.

A useful, thorough reference for engineers and students.

Author Biography

R.C. Hibbeler graduated from the University of Illinois at Urbana with a BS in Civil Engineering (major in Structures) and an MS in Nuclear Engineering. He obtained his PhD in Theoretical and Applied Mechanics from Northwestern University.
Hibbeler’s professional experience includes postdoctoral work in reactor safety and analysis at Argonne National Laboratory, and structural work at Chicago Bridge and Iron, as well as Sargent and Lundy in Tucson. He has practiced engineering in Ohio, New York, and Louisiana.
Hibbeler currently teaches at the University of Louisiana, Lafayette. In the past he has taught at the University of Illinois at Urbana, Youngstown State University, Illinois Institute of Technology, and Union College.

Table of Contents

Chapter 1: Stress

            1.1  Introduction

            1.2  Equilibrium of a Deformable Body

            1.3  Stress

            1.4  Average Normal Stress in an Axially Loaded Bar

            1.5  Average Shear Stress

            1.6  Allowable Stress

            1.7  Design of Simple Connections

 

Chapter 2: Strain

            2.1 Deformation

            2.2 Strain

 

Chapter 3: Mechanical Properties of Materials

            3.1 The Tension and Compression Test

            3.2 The Stress–Strain Diagram

            3.3 Stress–Strain Behavior of Ductile and Brittle Materials

            3.4 Hooke’s Law

            3.5 Strain Energy

            3.6 Poisson’s Ratio

            3.7 The Shear Stress–Strain Diagram

            3.8 Failure of Materials Due to Creep and Fatigue

 

Chapter 4: Axial Load

            4.1 Saint-Venant’s Principle

            4.2 Elastic Deformation of an Axially Loaded Member

            4.3 Principle of Superposition

            4.4 Statically Indeterminate Axially Loaded Member

            4.5 The Force Method of Analysis for Axially Loaded Members

            4.6 Thermal Stress

            4.7 Stress Concentrations

            4.8 Inelastic Axial Deformation

            4.9 Residual Stress

 

Chapter 5: Torsion

            5.1 Torsional Deformation of a Circular Shaft

            5.2 The Torsion Formula

            5.3 Power Transmission

            5.4 Angle of Twist

            5.5 Statically Indeterminate Torque-Loaded Members

            5.6 Solid Noncircular Shafts

            5.7 Thin-Walled Tubes Having Closed Cross Sections

            5.8 Stress Concentration

            5.9 Inelastic Torsion

            5.10 Residual Stress

 

Chapter 6: Bending

            6.1 Shear and Moment Diagrams

            6.2 Graphical Method for Constructing Shear and Moment Diagrams

            6.3 Bending Deformation of a Straight Member

            6.4 The Flexure Formula

            6.5 Unsymmetric Bending

            6.6 Composite Beams

            6.7 Reinforced Concrete Beams

            6.8 Curved Beams

            6.9 Stress Concentrations

            6.10 Inelastic Bending

 

Chapter 7: Transverse Shear

            7.1 Shear in Straight Members

            7.2 The Shear Formula

            7.3 Shear Flow in Built-Up Members

            7.4 Shear Flow in Thin-Walled Members

            7.5 Shear Center for Open Thin-Walled Members

 

Chapter 8: Combined Loadings

            8.1 Thin-Walled Pressure Vessels

            8.2 State of Stress Caused by Combined Loadings

 

Chapter 9: Stress Transformation

            9.1 Plane-Stress Transformation

            9.2 General Equations of Plane-Stress Transformation

            9.3 Principal Stresses and Maximum In-Plane Shear Stress

            9.4 Mohr’s Circle—Plane Stress

            9.5 Absolute Maximum Shear Stress

 

Chapter 10: Strain Transformation

            10.1 Plane Strain

            10.2 General Equations of Plane-Strain Transformation

            10.3 Mohr’s Circle—Plane Strain

            10.4 Absolute Maximum Shear Strain

            10.5 Strain Rosettes

            10.6 Material-Property Relationships

            10.7 Theories of Failure

 

Chapter 11: Design of Beams and Shafts

            11.1 Basis for Beam Design

            11.2 Prismatic Beam Design

            11.3 Fully Stressed Beams

            11.4 Shaft Design

 

Chapter 12: Deflection of Beams and Shafts

            12.1 The Elastic Curve

            12.2 Slope and Displacement 12 by Integration

            12.3 Discontinuity Functions

            12.4 Slope and Displacement by the Moment-Area Method

            12.5 Method of Superposition

            12.6 Statically Indeterminate Beams and Shafts

            12.7 Statically Indeterminate Beams and Shafts—Method of Integration

            12.8 Statically Indeterminate Beams and Shafts—Moment-Area Method

            12.9 Statically Indeterminate Beams and Shafts—Method of Superposition

 

Chapter 13: Buckling of Columns

            13.1 Critical Load

            13.2 Ideal Column with Pin Supports

            13.3 Columns Having Various Types of Supports

            13.4 The Secant Formula

            13.5 Inelastic Buckling

            13.6 Design of Columns for Concentric Loading

            13.7 Design of Columns for Eccentric Loading

 

Chapter 14: Energy Methods

            14.1 External Work and Strain Energy

            14.2 Elastic Strain Energy for Various Types of Loading

            14.3 Conservation of Energy

            14.4 Impact Loading

            14.5 Principle of Virtual Work

            14.6 Method of Virtual Forces Applied to Trusses

            14.7 Method of Virtual Forces Applied to Beams

            14.8 Castigliano’s Theorem

            14.9 Castigliano’s Theorem Applied to Trusses

            14.10 Castigliano’s Theorem Applied to Beams

 

Appendix A: Geometric Properties of An Area

            A.1 Centroid of an Area

            A.2 Moment of Inertia for an Area

            A.3 Product of Inertia for an Area

            A.4 Moments of Inertia for an Area about Inclined Axes

            A.5 Mohr’s Circle for Moments of Inertia

 

Appendix B: Geometric Properties of Structural Shapes

 

Appendix C: Slopes and Deflections of Beams

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program