CART

(0) items

Modern Operating Systems,9780133591620
This item qualifies for
FREE SHIPPING!

FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Modern Operating Systems

by ;
Edition:
4th
ISBN13:

9780133591620

ISBN10:
013359162X
Format:
Hardcover
Pub. Date:
3/10/2014
Publisher(s):
Prentice Hall

Questions About This Book?

Why should I rent this book?
Renting is easy, fast, and cheap! Renting from eCampus.com can save you hundreds of dollars compared to the cost of new or used books each semester. At the end of the semester, simply ship the book back to us with a free UPS shipping label! No need to worry about selling it back.
How do rental returns work?
Returning books is as easy as possible. As your rental due date approaches, we will email you several courtesy reminders. When you are ready to return, you can print a free UPS shipping label from our website at any time. Then, just return the book to your UPS driver or any staffed UPS location. You can even use the same box we shipped it in!
What version or edition is this?
This is the 4th edition with a publication date of 3/10/2014.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. You may receive a brand new copy, but typically, only the book itself.

Related Products


  • Modern Operating Systems
    Modern Operating Systems
  • Modern Operating Systems
    Modern Operating Systems





Summary

Modern Operating Systems, Fourth Edition, is intended for introductory courses in Operating Systems in Computer Science, Computer Engineering, and Electrical Engineering programs. It also serves as a useful reference for OS professionals

¿

The widely anticipated revision of this worldwide best-seller incorporates the latest developments in operating systems (OS) technologies. The Fourth Edition includes up-to-date materials on relevant¿OS. Tanenbaum also provides information on current research based on his experience as an operating systems researcher.

¿

Modern Operating Systems, Third Editionwas the recipient of the 2010 McGuffey Longevity Award. The McGuffey Longevity Award recognizes textbooks whose excellence has been demonstrated over time.¿http://taaonline.net/index.html

¿¿

Teaching and Learning Experience

This program will provide a better teaching and learning experience–for you and your students. It will help:

¿

  • Provide Practical Detail on the Big Picture Concepts: A clear and entertaining writing style outlines the concepts every OS designer needs to master.
  • Keep Your Course Current: This edition includes information on the latest OS technologies and developments
  • Enhance Learning with Student and Instructor Resources: Students will gain hands-on experience using the simulation exercises and lab experiments.

Author Biography

Andrew S. Tanenbaum has an S.B. degree from M.I.T. and a Ph.D. from the University of California at Berkeley. He is currently a Professor of Computer Science at the Vrije Universiteit in Amsterdam, The Netherlands, where he is head of the Computer Systems Department. He is also the Dean of the Advanced School for Computing and Imaging, an interuniversity graduate school doing research on advanced parallel, distributed, and imaging systems. Nevertheless, he is trying very hard to avoid turning into a bureaucrat.

In the past, he has done research on compilers, operating systems, networking, and local-area distributed systems. His current research focuses primarily on the design of wide-area distributed systems that scale to a billion users. This research is being done together with Dr. Maarten van Steen. Together, all his research projects have led to over 90 refereed papers in journals and conference proceedings and five books.

Prof. Tanenbaum has also produced a considerable volume of software. He was the principal architect of the Amsterdam Compiler Kit, a widely-used toolkit for writing portable compilers, as well as of MINIX, a small UNIX clone intended for use in student programming labs. Together with his Ph.D. students and programmers, he helped design the Amoeba distributed operating system, a high-performance microkernel-based distributed operating system. The MINIX and Amoeba systems are now available for free via the Internet.

His Ph.D. students have gone on to greater glory after getting their degrees. He is very proud of them. In this respect he resembles a mother hen.

Prof. Tanenbaum is a Fellow of the ACM, a Fellow of the IEEE, a member of the Royal Netherlands Academy of Arts and Sciences, winner of the 1994 ACM Karl V Karlstrom Outstanding Educator Award, and winner of the 1997 ACM/SIGCSE Award for Outstanding Contributions to Computer Science Education. He is also listed in Who's Who in the World. His home page on the World Wide Web can be found at URL http://www.cs.vu.nl/~ast/ .

Table of Contents

CHAPTER 1 "INTRODUCTION"

    1.1    WHAT IS AN OPERATING SYSTEM?   3
        1.1.1  The Operating System as an Extended Machine   4
        1.1.2  The Operating System as a Resource Manager   5

    1.2    HISTORY OF OPERATING SYSTEMS   6
        1.2.1  The First Generation (1945-55): Vacuum Tubes   7
        1.2.2  The Second Generation (1955-65): Transistors and Batch Systems 8
        1.2.3  The Third Generation (1965-1980): ICs and Multiprogramming   9
        1.2.4  The Fourth Generation (1980-Present): Personal Computers   15
        1.2.5  The Fifth Generation (1990-Present): Mobile Computers   19

    1.3    COMPUTER HARDWARE REVIEW   20
        1.3.1  Processors   21
        1.3.2  Memory   24
        1.3.3  Disks   27
        1.3.4  I/O Devices   28
        1.3.5  Buses   32
        1.3.6  Booting the Computer   34

    1.4    THE OPERATING SYSTEM ZOO   35
        1.4.1  Mainframe Operating Systems   35
        1.4.2  Server Operating Systems   35
        1.4.3  Multiprocessor Operating Systems   36
        1.4.4  Personal Computer Operating Systems   36
        1.4.5  Handheld Computer Operating Systems   36
        1.4.6  Embedded Operating Systems.   37
        1.4.7  Sensor-Node Operating Systems   37
        1.4.8  Real-Time Operating Systems   37
        1.4.9  Smart Card Operating Systems   38

    1.5    OPERATING SYSTEM CONCEPTS   38
        1.5.1  Processes   39
        1.5.2  Address Spaces   41
        1.5.3  Files   41
        1.5.4  Input/Output   45
        1.5.5  Protection   45
        1.5.6  The Shell   45
        1.5.7  Ontogeny Recapitulates Phylogeny   47

    1.6    SYSTEM CALLS   50
        1.6.1  System Calls for Process Management   53
        1.6.2  System Calls for File Management   56
        1.6.3  System Calls for Directory Management   57
        1.6.4  Miscellaneous System Calls   59
        1.6.5  The Windows Win32 API   60

    1.7    OPERATING SYSTEM STRUCTURE   62
        1.7.1  Monolithic Systems   63
        1.7.2  Layered Systems   64
        1.7.3  Microkernels   65
        1.7.4  Client-Server Model   68
        1.7.5  Virtual Machines   69
        1.7.6  Exokernels   73

    1.8    THE WORLD ACCORDING TO C   73
        1.8.1  The C Language   73
        1.8.2  Header Files   74
        1.8.3  Large Programming Projects   75
        1.8.4  The Model of Run Time   76

    1.9    RESEARCH ON OPERATING SYSTEMS   77

    1.10    OUTLINE OF THE REST OF THIS BOOK   78

    1.11    METRIC UNITS   79

    1.12    SUMMARY   80

CHAPTER 2 "PROCESSES AND THREADS"

    2.1    PROCESSES   85
        2.1.1  The Process Model   86
        2.1.2  Process Creation   88
        2.1.3  Process Termination   90
        2.1.4  Process Hierarchies   91
        2.1.5  Process States   92
        2.1.6  Implementation of Processes   94
        2.1.7  Modeling Multiprogramming   95

    2.2    THREADS   97
        2.2.1  Thread Usage   97
        2.2.2  The Classical Thread Model   102
        2.2.3  POSIX Threads   106
        2.2.4  Implementing Threads in User Space   108
        2.2.5  Implementing Threads in the Kernel   111
        2.2.6  Hybrid Implementations   112
        2.2.7  Scheduler Activations   113
        2.2.8  Pop-Up Threads   114
        2.2.9  Making Single-Threaded Code Multithreaded   116

    2.3    INTERPROCESS COMMUNICATION   119
        2.3.1  Race Conditions   119
        2.3.2  Critical Regions   121
        2.3.3  Mutual Exclusion with Busy Waiting   122
        2.3.4  Sleep and Wakeup   127
        2.3.5  Semaphores   130
        2.3.6  Mutexes   132
        2.3.7  Monitors   137
        2.3.8  Message Passing   144
        2.3.9  Barriers   146
        2.3.10  Avoiding Locks: Read-Copy-Update   148

    2.4    SCHEDULING   149
        2.4.1  Introduction to Scheduling   150
        2.4.2  Scheduling in Batch Systems   156
        2.4.3  Scheduling in Interactive Systems   158
        2.4.4  Scheduling in Real-Time Systems   164
        2.4.5  Policy Versus Mechanism   165
        2.4.6  Thread Scheduling   166

    2.5    CLASSICAL IPC PROBLEMS   167
        2.5.1  The Dining Philosophers Problem   167
        2.5.2  The Readers and Writers Problem   171

    2.6    RESEARCH ON PROCESSES AND THREADS   172

    2.7    SUMMARY   173

CHAPTER 3 "MEMORY MANAGEMENT"

    3.1    NO MEMORY ABSTRACTION   182

    3.2    A MEMORY ABSTRACTION: ADDRESS SPACES   185
        3.2.1  The Notion of an Address Space   186
        3.2.2  Swapping   187
        3.2.3  Managing Free Memory   190

    3.3    VIRTUAL MEMORY   194
        3.3.1  Paging   195
        3.3.2  Page Tables   198
        3.3.3  Speeding Up Paging   201
        3.3.4  Page Tables for Large Memories   205

    3.4    PAGE REPLACEMENT ALGORITHMS   209
        3.4.1  The Optimal Page Replacement Algorithm   209
        3.4.2  The Not Recently Used Page Replacement Algorithm   210
        3.4.3  The First-In, First-Out (FIFO) Page Replacement Algorithm   211
        3.4.4  The Second-Chance Page Replacement Algorithm   212
        3.4.5  The Clock Page Replacement Algorithm   212
        3.4.6  The Least Recently Used (LRU) Page Replacement Algorithm   213
        3.4.7  Simulating LRU in Software   214
        3.4.8  The Working Set Page Replacement Algorithm   215
        3.4.9  The WSClock Page Replacement Algorithm   219
        3.4.10  Summary of Page Replacement Algorithms   221

    3.5    DESIGN ISSUES FOR PAGING SYSTEMS   222
        3.5.1  Local versus Global Allocation Policies   222
        3.5.2  Load Control   225
        3.5.3  Page Size   225
        3.5.4  Separate Instruction and Data Spaces   227
        3.5.5  Shared Pages   228
        3.5.6  Shared Libraries   229
        3.5.7  Mapped Files   231
        3.5.8  Cleaning Policy   232
        3.5.9  Virtual Memory Interface   232

    3.6    IMPLEMENTATION ISSUES   233
        3.6.1  Operating System Involvement with Paging   233
        3.6.2  Page Fault Handling   234
        3.6.3  Instruction Backup   235
        3.6.4  Locking Pages in Memory   237
        3.6.5  Backing Store   237
        3.6.6  Separation of Policy and Mechanism   239

    3.7    SEGMENTATION   240
        3.7.1  Implementation of Pure Segmentation   243
        3.7.2  Segmentation with Paging: MULTICS   243
        3.7.3  Segmentation with Paging: The Intel x86   247

    3.8    RESEARCH ON MEMORY MANAGEMENT   252

    3.9    SUMMARY   253

CHAPTER 4 "FILE SYSTEMS"

    4.1    FILES
        4.1.1  File Naming
        4.1.2  File Structure
        4.1.3  File Types
        4.1.4  File Access
        4.1.5  File Attributes
        4.1.6  File Operations
        4.1.7  An Example Program Using File-System Calls

    4.2    DIRECTORIES
        4.2.1  Single-Level Directory Systems
        4.2.2  Hierarchical Directory Systems
        4.2.3  Path Names
        4.2.4  Directory Operations

    4.3    FILE SYSTEM IMPLEMENTATION
        4.3.1  File-System Layout
        4.3.2  Implementing Files
        4.3.3  Implementing Directories
        4.3.4  Shared Files
        4.3.5  Log-Structured File Systems
        4.3.6  Journaling File Systems
        4.3.7  Virtual File Systems

    4.4    FILE-SYSTEM MANAGEMENT AND OPTIMIZATION
        4.4.1  Disk-Space Management
        4.4.2  File-System Backups
        4.4.3  File-System Consistency
        4.4.4  File-System Performance
        4.4.5  Defragmenting Disks

    4.5    EXAMPLE FILE SYSTEMS
        4.5.1  The MS-DOS File System
        4.5.2  The UNIX V7 File System
        4.5.3  CD-ROM File Systems

    4.6    RESEARCH ON FILE SYSTEMS

    4.7    SUMMARY

CHAPTER 5 "INPUT/OUTPUT"

    5.1    PRINCIPLES OF I/O HARDWARE
        5.1.1  I/O Devices
        5.1.2  Device Controllers
        5.1.3  Memory-Mapped I/O
        5.1.4  Direct Memory Access
        5.1.5  Interrupts Revisited

    5.2    PRINCIPLES OF I/O SOFTWARE
        5.2.1  Goals of the I/O Software
        5.2.2  Programmed I/O
        5.2.3  Interrupt-Driven I/O
        5.2.4  I/O Using DMA

    5.3    I/O SOFTWARE LAYERS
        5.3.1  Interrupt Handlers
        5.3.2  Device Drivers
        5.3.3  Device-Independent I/O Software
        5.3.4  User-Space I/O Software

    5.4    DISKS
        5.4.1  Disk Hardware
        5.4.2  Disk Formatting
        5.4.3  Disk Arm Scheduling Algorithms
        5.4.4  Error Handling
        5.4.5  Stable Storage

    5.5    CLOCKS
        5.5.1  Clock Hardware
        5.5.2  Clock Software
        5.5.3  Soft Timers

    5.6    USER INTERFACES: KEYBOARD, MOUSE, MONITOR
        5.6.1  Input Software
        5.6.2  Output Software

    5.7    THIN CLIENTS

    5.8    POWER MANAGEMENT
        5.8.1  Hardware Issues
        5.8.2  Operating System Issues
        5.8.3  Application Program Issues

    5.9    RESEARCH ON INPUT/OUTPUT

    5.10    SUMMARY

CHAPTER 6 "DEADLOCKS"

    6.1    RESOURCES
        6.1.1  Preemptable and Nonpreemptable Resources
        6.1.2  Resource Acquisition

    6.2    INTRODUCTION TO DEADLOCKS
        6.2.1  Conditions for Resource Deadlocks
        6.2.2  Deadlock Modeling

    6.3    THE OSTRICH ALGORITHM

    6.4    DEADLOCK DETECTION AND RECOVERY
        6.4.1  Deadlock Detection with One Resource of Each Type
        6.4.2  Deadlock Detection with Multiple Resources of Each Type
        6.4.3  Recovery from Deadlock

    6.5    DEADLOCK AVOIDANCE
        6.5.1  Resource Trajectories
        6.5.2  Safe and Unsafe States
        6.5.3  The Banker's Algorithm for a Single Resource
        6.5.4  The Banker's Algorithm for Multiple Resources

    6.6    DEADLOCK PREVENTION
        6.6.1  Attacking the Mutual Exclusion Condition
        6.6.2  Attacking the Hold and Wait Condition
        6.6.3  Attacking the No Preemption Condition
        6.6.4  Attacking the Circular Wait Condition

    6.7    OTHER ISSUES
        6.7.1  Two-Phase Locking
        6.7.2  Communication Deadlocks
        6.7.3  Livelock
        6.7.4  Starvation

    6.8    RESEARCH ON DEADLOCKS

    6.9    SUMMARY

CHAPTER 7 "VIRTUALIZATION AND THE CLOUD"

    7.1    HISTORY

    7.2    REQUIREMENTS FOR VIRTUALIZATION

    7.3    TYPE 1 AND TYPE 2 HYPERVISORS

    7.4    TECHNIQUES FOR EFFICIENT VIRTUALIZATION
        7.4.1  Virtualizing the Unvirtualizable
        7.4.2  The Cost of Virtualization

    7.5    ARE HYPERVISORS MICROKERNELS DONE RIGHT?

    7.6    MEMORY VIRTUALIZATION

    7.7    I/O VIRTUALIZATION

    7.8    VIRTUAL APPLIANCES

    7.9    VIRTUAL MACHINES ON MULTICORE CPUS

    7.10    LICENSING ISSUES

    7.11    CLOUDS
        7.11.1  Clouds as a Service
        7.11.2  Virtual Machine Migration
        7.11.3  Checkpointing

    7.12    CASE STUDY: VMWARE
        7.12.1  The early history of VMware
        7.12.2  VMware Workstation
        7.12.3  Challenges in Bringing Virtualization to the x86
        7.12.4  VMware Workstation: Solution Overview
        7.12.5  The Evolution of VMware Workstation
        7.12.6  ESX Server: VMware's type-1 hypervisor

    7.13    RESEARCH ON VIRTUALIZATION AND THE CLOUD

CHAPTER 8 "MULTIPLE PROCESSOR SYSTEMS"

    8.1    MULTIPROCESSORS
        8.1.1  Multiprocessor Hardware
        8.1.2  Multiprocessor Operating System Types
        8.1.3  Multiprocessor Synchronization
        8.1.4  Multiprocessor Scheduling

    8.2    MULTICOMPUTERS
        8.2.1  Multicomputer Hardware
        8.2.2  Low-Level Communication Software
        8.2.3  User-Level Communication Software
        8.2.4  Remote Procedure Call
        8.2.5  Distributed Shared Memory
        8.2.6  Multicomputer Scheduling
        8.2.7  Load Balancing

    8.3    DISTRIBUTED SYSTEMS
        8.3.1  Network Hardware
        8.3.2  Network Services and Protocols
        8.3.3  Document-Based Middleware
        8.3.4  File-System-Based Middleware
        8.3.5  Object-Based Middleware
        8.3.6  Coordination-Based Middleware

    8.4    RESEARCH ON MULTIPLE PROCESSOR SYSTEMS

    8.5    SUMMARY

CHAPTER 9 "SECURITY"

    9.1    THE SECURITY ENVIRONMENT
        9.1.1  Threats
        9.1.2  Attackers

    9.2    OPERATING SYSTEMS SECURITY
        9.2.1  Can We Build Secure Systems?
        9.2.2  Trusted Computing Base

    9.3    CONTROLLING ACCESS TO RESOURCES
        9.3.1  Protection Domains
        9.3.2  Access Control Lists
        9.3.3  Capabilities

    9.4    FORMAL MODELS OF SECURE SYSTEMS
        9.4.1  Multilevel Security
        9.4.2  Covert Channels

    9.5    BASICS OF CRYPTOGRAPHY
        9.5.1  Secret-Key Cryptography
        9.5.2  Public-Key Cryptography
        9.5.3  One-Way Functions
        9.5.4  Digital Signatures
        9.5.5  Trusted Platform Module

    9.6    AUTHENTICATION
        9.6.1  Authentication Using a Physical Object
        9.6.2  Authentication Using Biometrics

    9.7    EXPLOITING SOFTWARE
        9.7.1  Buffer Overflow Attacks
        9.7.2  Format String Attacks
        9.7.3  Dangling Pointers
        9.7.4  Null Pointer Dereference Attacks
        9.7.5  Integer Overflow Attacks
        9.7.6  Command Injection Attacks
        9.7.7  Time of Check to Time of Use (TOCTOU) Attacks

    9.8    INSIDER ATTACKS
        9.8.1  Logic Bombs
        9.8.2  Back Doors
        9.8.3  Login Spoofing

    9.9    MALWARE
        9.9.1  Trojan Horses
        9.9.2  Viruses
        9.9.3  Worms
        9.9.4  Spyware
        9.9.5  Rootkits

    9.10    DEFENSES
        9.10.1  Firewalls
        9.10.2  Antivirus and Anti-Antivirus Techniques
        9.10.3  Code Signing
        9.10.4  Jailing
        9.10.5  Model-Based Intrusion Detection
        9.10.6  Encapsulating Mobile Code
        9.10.7  Java Security

    9.11    RESEARCH ON SECURITY

    9.12    SUMMARY

CHAPTER 10 "CASE STUDY 1: UNIX, LINUX, AND ANDROID"

    10.1    HISTORY OF UNIX AND LINUX
        10.1.1  UNICS
        10.1.2  PDP-11 UNIX
        10.1.3  Portable UNIX
        10.1.4  Berkeley UNIX
        10.1.5  Standard UNIX
        10.1.6  MINIX
        10.1.7  Linux

    10.2    OVERVIEW OF LINUX
        10.2.1  Linux Goals
        10.2.2  Interfaces to Linux
        10.2.3  The Shell
        10.2.4  Linux Utility Programs
        10.2.5  Kernel Structure

    10.3    PROCESSES IN LINUX
        10.3.1  Fundamental Concepts
        10.3.2  Process Management System Calls in Linux
        10.3.3  Implementation of Processes and Threads in Linux
        10.3.4  Scheduling in Linux
        10.3.5  Booting Linux

    10.4    MEMORY MANAGEMENT IN LINUX
        10.4.1  Fundamental Concepts
        10.4.2  Memory Management System Calls in Linux
        10.4.3  Implementation of Memory Management in Linux
        10.4.4  Paging in Linux

    10.5    INPUT/OUTPUT IN LINUX
        10.5.1  Fundamental Concepts
        10.5.2  Networking
        10.5.3  Input/Output System Calls in Linux
        10.5.4  Implementation of Input/Output in Linux
        10.5.5  Modules in Linux

    10.6    THE LINUX FILE SYSTEM
        10.6.1  Fundamental Concepts
        10.6.2  File System Calls in Linux
        10.6.3  Implementation of the Linux File System
        10.6.4  NFS: The Network File System

    10.7    SECURITY IN LINUX
        10.7.1  Fundamental Concepts
        10.7.2  Security System Calls in Linux
        10.7.3  Implementation of Security in Linux

    10.8    ANDROID

    10.9    SUMMARY

CHAPTER 11 "CASE STUDY 2: WINDOWS 8"

    11.1    HISTORY OF WINDOWS THROUGH WINDOWS 8.1
        11.1.1  1980s: MS-DOS
        11.1.2  1990s: MS-DOS-based Windows
        11.1.3  2000s: NT-based Windows
        11.1.4  Windows Vista
        11.1.5  2010s: Modern Windows

    11.2    PROGRAMMING WINDOWS
        11.2.1  The Native NT Application Programming Interface
        11.2.2  The Win32 Application Programming Interface
        11.2.3  The Windows Registry

    11.3    SYSTEM STRUCTURE
        11.3.1  Operating System Structure
        11.3.2  Booting Windows
        11.3.3  Implementation of the Object Manager
        11.3.4  Subsystems, DLLs, and User-Mode Services

    11.4    PROCESSES AND THREADS IN WINDOWS
        11.4.1  Fundamental Concepts
        11.4.2  Job, Process, Thread, and Fiber Management API Calls
        11.4.3  Implementation of Processes and Threads

    11.5    MEMORY MANAGEMENT
        11.5.1  Fundamental Concepts
        11.5.2  Memory Management System Calls
        11.5.3  Implementation of Memory Management

    11.6    CACHING IN WINDOWS

    11.7    INPUT/OUTPUT IN WINDOWS
        11.7.1  Fundamental Concepts
        11.7.2  Input/Output API Calls
        11.7.3  Implementation of I/O

    11.8    THE WINDOWS NT FILE SYSTEM
        11.8.1  Fundamental Concepts
        11.8.2  Implementation of the NT File System

    11.9    WINDOWS POWER MANAGEMENT

    11.10    SECURITY IN WINDOWS 8
        11.10.1  Fundamental Concepts
        11.10.2  Security API Calls
        11.10.3  Implementation of Security
        11.10.4  Security Mitigations

    11.11    SUMMARY

CHAPTER 13 "OPERATING SYSTEM DESIGN"

    13.1    THE NATURE OF THE DESIGN PROBLEM
        13.1.1  Goals
        13.1.2  Why Is It Hard to Design an Operating System?

    13.2    INTERFACE DESIGN
        13.2.1  Guiding Principles
        13.2.2  Paradigms
        13.2.3  The System Call Interface

    13.3    IMPLEMENTATION
        13.3.1  System Structure
        13.3.2  Mechanism versus Policy
        13.3.3  Orthogonality
        13.3.4  Naming
        13.3.5  Binding Time
        13.3.6  Static versus Dynamic Structures
        13.3.7  Top-Down versus Bottom-Up Implementation
        13.3.8  Useful Techniques

    13.4    PERFORMANCE
        13.4.1  Why Are Operating Systems Slow?
        13.4.2  What Should Be Optimized?
        13.4.3  Space-Time Trade-offs
        13.4.4  Caching
        13.4.5  Hints
        13.4.6  Exploiting Locality
        13.4.7  Optimize the Common Case

    13.5    PROJECT MANAGEMENT
        13.5.1  The Mythical Man Month
        13.5.2  Team Structure
        13.5.3  The Role of Experience
        13.5.4  No Silver Bullet

    13.6    TRENDS IN OPERATING SYSTEM DESIGN
        13.6.1  Virtualization
        13.6.2  Multicore Chips
        13.6.3  Large Address Space Operating Systems
        13.6.4  Networking
        13.6.5  Parallel and Distributed Systems
        13.6.6  Multimedia
        13.6.7  Battery-Powered Computers
        13.6.8  Embedded Systems
        13.6.9  Sensor Nodes

    13.7    SUMMARY

CHAPTER 14 "READING LIST AND BIBLIOGRAPHY"

    14.1    SUGGESTIONS FOR FURTHER READING
        14.1.1  Introduction and General Works
        14.1.2  Processes and Threads
        14.1.3  Memory Management
        14.1.4  Input/Output
        14.1.5  File Systems
        14.1.6  Deadlocks
        14.1.7  Virtualization and the CLoud
        14.1.8  Multiple Processor Systems
        14.1.9  Security
        14.1.10  UNIX, Linux, and Android
        14.1.11  Windows 8
        14.1.12  Design Principles

    14.2    ALPHABETICAL BIBLIOGRAPHY



Please wait while the item is added to your cart...