CART

(0) items

Modern Physics, 3rd Edition,9781118061145
This item qualifies for
FREE SHIPPING!

FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Modern Physics, 3rd Edition

by
Edition:
3rd
ISBN13:

9781118061145

ISBN10:
1118061144
Format:
Hardcover
Pub. Date:
2/1/2012
Publisher(s):
Wiley
Includes 2-weeks free access to
step-by-step solutions for this book.
Step-by-Step solutions are actual worked out problems to the questions at the end of each chapter that help you understand your homework and study for your exams. Chegg and eCampus are providing you two weeks absolutely free. 81% of students said using Step-by-Step solutions prepared them for their exams.
List Price: $211.60

Rent Textbook

(Recommended)
 
Term
Due
Price
$74.06

Hurry!

Only two copies
in stock at this price.

Buy Used Textbook

In Stock Usually Ships in 24 Hours.
U9781118061145
$148.12

Buy New Textbook

In Stock Usually Ships in 24 Hours.
N9781118061145
$203.14

eTextbook


 
Duration
Price
$89.10
More New and Used
from Private Sellers
Starting at $64.05
See Prices

Questions About This Book?

Why should I rent this book?
Renting is easy, fast, and cheap! Renting from eCampus.com can save you hundreds of dollars compared to the cost of new or used books each semester. At the end of the semester, simply ship the book back to us with a free UPS shipping label! No need to worry about selling it back.
How do rental returns work?
Returning books is as easy as possible. As your rental due date approaches, we will email you several courtesy reminders. When you are ready to return, you can print a free UPS shipping label from our website at any time. Then, just return the book to your UPS driver or any staffed UPS location. You can even use the same box we shipped it in!
What version or edition is this?
This is the 3rd edition with a publication date of 2/1/2012.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Used copy of this book is not guaranteed to inclue any supplemental materials. Typically, only the book itself is included.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. You may receive a brand new copy, but typically, only the book itself.

Summary

This is a much awaited revision of a modern classic that covers all the major topics in modern physics, including relativity, quantum physics, and their applications. Krane provides a balanced presentation of both the historical development of all major modern physics concepts and the experimental evidence supporting the theory.

Table of Contents

Chapter 1. The Failures of Classical Physics
1.1 Review of Classical Physics
1.2 The Failure of Classical Concepts of Space and Time
1.3 The Failure of the Classical Theory of Particle Statistics
1.4 Theory, Experiment, Law
Summary
Questions
Problems

Chapter 2. The Special Theory of Relativity
2.1 Classical Relativity
2.2 The Michelson-Morley Experiment
2.3 Einstein's Postulates
2.4 Consequences of Einstein's Postulates
2.5 The Lorentz Transformation
2.6 The Twin Paradox
2.7 Relativistic Dynamics
2.8 Conservation Laws in Relativistic Decays and Collisions
2.9 Experimental Tests of Special Relativity
Summary
Questions
Problems

Chapter 3. The Particlelike Properties of Electromagnetic Radiation
3.1 Review of Electromagnetic Waves
3.2 The Photoelectric Effect
3.3 Thermal Radiation
3.4 The Compton Effect
3.5 Other Photon Processes
3.6 What Is a Photon?
Summary
Questions
Problems

Chapter 4. The Wavelike Properties of Particles
4.1 DeBroglie's Hypothesis
4.2 Experimental Evidence for DeBroglie Waves
4.3 Uncertainty Relationships for Classical Waves
4.4 Heisenberg Uncertainty Relationships
4.5 Wave Packets
4.6 The Motion of a Wave Packet
4.7 Probability and Randomness
Summary
Questions
Problems

Chapter 5. The Schrödinger Equation
5.1 Behavior of a Wave at a Boundary
5.2 Confining a Particle
5.3 The Schrödinger Equation
5.4 Applications of the Schrödinger Equation
5.5 The Simple Harmonic Oscillator
5.6 Steps and Barriers
Summary
Questions
Problems

Chapter 6. The Rutherford-Bohr Model of the Atom
6.1 Basic Properties of Atoms
6.2 Scattering Experiments and the Thomson Model
6.3 The Rutherford Nuclear Atom
6.4 Line Spectra
6.5 The Bohr Model
6.6 The Franck-Hertz Experiment
6.7 The Correspondence Principle
6.8 Deficiencies of the Bohr Model
Summary
Questions
Problems

Chapter 7. The Hydrogen Atom in Wave Mechanics
7.1 A One-Dimensional Atom
7.2 Angular Momentum in the Hydrogen Atom
7,3 The Hydrogen Atom Wave Functions
7.4 Radial Probability Densities
7.5 Angular Probability Densities
7.6 Intrinsic Spin
7.7 Energy Levels and Spectroscopic Notation
7.8 The Zeeman Effect
7.9 Fine Structure
Summary
Questions
Problems

Chapter 8. Many-Electron Atoms
8.1 The Pauli Exclusion Principle
8.2 Electronic States in Many-Electron Atoms
8.3 Outer Electrons: Screening and Optical Transitions
8.4 Properties of the Elements
8.5 Inner Electrons: Absorption Edges and X Rays
8.6 Addition of Angular Momenta
8.7 Lasers
Summary
Questions Problems

Chapter 9. Molecular Structure
9.1 The Hydrogen Molecule
9.2 Covalent Bonding in Molecules
9.3 Ionic Bonding
9.4 Molecular Vibrations
9.5 Molecular Rotations
9.6 Molecular Spectra
Summary
Questions
Problems

Chapter 10. Statistical Physics
10.1 Statistical Analysis
10.2 Classical and Quantum Statistics
10.3 The Density of States
10.4 The Maxwell-Boltzmann Distribution
10.5 Quantum Statistics
10.6 Application of Bose-Einstein Statistics
10.7 Application of Fermi-Dirac Statistics
Sumary
Questions
Problems

Chapter 11. Solid-State Physics
11.1 Crystal Structures
11.2 The Heat Capacity of Solids
11.3 Electrons in Metals
11.4 Band Theory of Solids
11.5 Superconductivity
11.6 Intrinsic and Impurity Semiconductors
11.7 Semiconductor Devices
11.8 Magnetic Materials
Questions
Problems

Chapter 12. Nuclear Structure and Radioactivity
12.1 Nuclear Constituents
12.2 Nuclear Sizes and Shapes
12.3 Nuclear Masses and Binding Energies
12.4 The Nuclear Force
12.5 Quantum States in Nuclei
12.6 Radioactive Decay
12.7 Alpha Decay
12.8 Beta Decay
12.9 Gamma Decay and Nuclear Excited States
12.10 Natural Radioactivity
Summary
Questions
Problems

Chapter 13. Nuclear Reactions and Applications
13.1 Types of Nuclear Reactions
13.2 Radioisotope Production in Nuclear Reactions
13.3 Low-Energy Reaction Kinematics
13.4 Fission
13.5 Fusion
13.6 Nucleosynthesis
13.7 Applications of Nuclear Physics
Summary
Questions
Problems

Chapter 14. Elementary Particles
14.1 The Four Basic Forces
14.2 Classifying Particles
14.3 Conservation Laws
14.4 Particle Interactions and Decays
14.5 Energy and Momentum in Particle Decays
14.6 Energy and Momentum in Particle Reactions
14.7 The Quark Structure of Mesons and Baryons
14.8 The Standard Model
Summary
Questions
Problems

Chapter 15. Cosmology: The Origin and Fate of the Universe
15.1 The Expansion of the Universe
15.2 The Cosmic Microwave Background Radiation
15.3 Dark Matter
15.4 The General Theory of Relativity
15.5 Tests of General Relativity
15.6 Stellar Evolution and Black Holes
15.7 Cosmology and General Relativity
15.8 The Big Bang Cosmology
15.9 The Formation of Nuclei and Atoms
15.10 Experimental Cosmology
Summary
Questions
Problems

Appendix A. Constants and Conversion Factors

Appendix B. Complex Numbers

Appendix C. Periodic Table of the Elements

Appendix D. Table of Atomic Masses

Answers to Odd-Numbered Problems



Please wait while the item is added to your cart...