did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780071601566

Optofluidics: Fundamentals, Devices, and Applications Fundamentals, Devices, and Applications

by ; ; ;
  • ISBN13:

    9780071601566

  • ISBN10:

    0071601562

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2009-09-08
  • Publisher: McGraw-Hill Education
  • Purchase Benefits
List Price: $184.00
  • Digital
    $203.00
    Add to Cart

    DURATION
    PRICE

Supplemental Materials

What is included with this book?

Summary

Detailed coverage of the fundamentals, devices, systems, and applications of optofluidicsOptfluidics refers to miniaturized optical systems that utilize unique properties of fluids, enabling greater precision and flexibility. This professional reference covers the emerging field of optofluidics, various devices, and a broad range of applications, including biomedical applications.Written by renowned researchers in the field of optical devices, Optofluidics covers currently available applications including optofluidic dye lasers, the optofluidic switch, tunable filters, electrowetting based lenses, and various biochemical sensors. The book concludes with a discussion of future implications of optofluidics.

Author Biography

Yeshaiahu Fainman is a professor of Electrical and Computer Engineering at the University of California San Diego.

.

Demetri Psaltis is a Professor of Optics, Dean of engineering at Ecole Polytechnique Fn++dn++rale de Lausanne..He is a fellow of the Optical Society of America and the Society for Photo-optical Systems Engineering (SPIE).

.

Changhuei Yang is an assistant professor of Electrical Engineering and Bioengineering at Caltech.

.

Table of Contents

Contributorsp. xv
Introductionp. 1
Introductionp. 1
What Is Optofluidics? A Historical Perspectivep. 2
Fluidic Advantagesp. 2
Immiscible Fluid-Fluid Interfaces Are Smoothp. 2
Diffusion Can Create Controllable Blend of Optical Propertiesp. 3
Fluid Can Be an Excellent Transport Mediump. 3
Fluid Can Be an Excellent Buoyancy-Mediatorp. 4
Optical Advantagesp. 4
Numerous High-Sensitivity Optical Sensing Techniques Existp. 4
Light Localization Can Occur at Biologically Interesting Scalep. 5
Light Can Manipulate Fluids and Objects Suspended in Fluidsp. 5
Futurep. 5
Referencesp. 6
Basic Microfluidic and Soft Lithographic Techniquesp. 7
Introductionp. 7
Historical Backgroundp. 8
Materials for Fabricating Microfluidic Devicesp. 8
Mechanical Properties of PDMSp. 8
Surface Chemistry of PDMSp. 10
Optical Properties of PDMSp. 13
Fabrication of Microfluidic Systems in PDMSp. 13
Characteristics of Flow in Microchannelsp. 14
Laminar Flowp. 14
Diffusionp. 16
Components Fabricated in PDMSp. 18
Inlets, Outlets, and Connectersp. 18
Valves and Pumpsp. 19
Mixersp. 20
p. 22
Local Heaters and Electromagnetsp. 22
Bubble and Droplet Generatorp. 25
Optical Componentsp. 27
Conclusionsp. 27
Referencesp. 28
Optical Components Based on Dynamic Liquid-Liquid Interfacesp. 33
Introductionp. 33
Basic Design and Construction of Liquid-Liquid Devicesp. 34
Index of Refraction of Common Liquidsp. 36
Dynamic Liquid-Liquid Interfaces in Microfluidic Systemsp. 39
L2 Interfaces Are Reconfigurable in Real Timep. 39
L2 Interfaces Are Smoothp. 40
L2 Interface between Miscible Liquids Is Diffusep. 41
Liquid-Liquid Optical Devicesp. 41
L2 Waveguidesp. 41
L2Lensesp. 46
L2 Light Sourcesp. 50
Bubble Gratingp. 54
Conclusionsp. 55
Referencesp. 56
Optofluidic Optical Componentsp. 59
Introductionp. 59
Optofluidic Waveguidesp. 60
Solid-Core/Liquid Clad Waveguidep. 61
Liquid-Core Waveguidep. 63
Hybrid-Core Waveguidep. 66
Optofluidic Components for Manipulation of Optical Signalsp. 67
Optofluidic Filtersp. 67
Conclusionsp. 72
Referencesp. 72
Optofluidic Trapping and Transport Using Planar Photonic Devicesp. 75
Extended Abstractp. 75
Optically Driven Microfluidicsp. 77
A Brief Review of Traditional Transport Mechanisms in Microfluidic Devicesp. 77
Optical Manipulation in Microfluidic Devicesp. 78
Some Limitations of Traditional Optical Manipulation Systemsp. 79
Near-Field Optical Manipulationp. 80
Optofluidic Transportp. 80
Qualitative Description of OptofluidicTransportp. 80
Why Is Optofluidic Transport Interesting?p. 82
Demonstrations of Optofluidic Transportp. 83
Optofluidic Transport within Solid-(and Liquid-)Core Waveguiding Devicep. 83
A Detailed Example-Optofluidic Transport in PDMS Microfluidics Using SU-8 Waveguidesp. 87
Theory of Optofluidic Transportp. 90
Overview and Recent Literaturep. 90
Microscale Hydrodynamics and Particle Transportp. 91
Electromagnetic Forcesn a Particlep. 93
Solutions in Different Transport Regimesp. 94
Comments on the Influence of Brownian Motion and Trapping Stabilityp. 96
Optofluidic Chromatographyp. 100
Summary and Conclusionsp. 103
Referencesp. 103
Optofluidic Colloidal Photonic Crystalsp. 107
Introduction to Colloidal Crystalsp. 108
Colloids and Colloidal Photonic Crystalsp. 108
Photonic Characteristics of Colloidal Photonic Crystalsp. 109
Integration of Colloidal Photonic Crystals into Microfluidic Systemsp. 110
Crystallization of Colloids in the Microfluidic Systemsp. 110
Applications of Integrated Colloidal Photonic Crystalsp. 117
Optofluidic Synthesis of Spherical Photonic Crystalsp. 120
Direct Synthesis of Photonic Balls in the Solid Statep. 122
Optofluidic Encapsulation of Crystalline Colloidal Arraysp. 124
Conclusions and Outlookp. 128
Summaryp. 129
Referencesp. 130
Optofluidic Photonic Crystal Fibers: Properties and Applicationsp. 133
Introductionp. 134
Optical Fibersp. 134
Optical Fiber Postprocessingp. 135
Optofluidics: History and Developmentp. 137
Fiber-Based Optofluidicsp. 138
Grapefruit-Fiber Optofluidic Devicesp. 143
Optofluidic Transverse Fiber Quasi-2-D Photonic Crystalsp. 148
Optofluidic Transverse PCFp. 148
Dynamic Optofluidic Attenuatorp. 151
Ultracompact Microfluidic Interferometerp. 153
Fluidic Photonic Bandgap Fiberp. 158
Future Directionsp. 164
Photonic Devicesp. 164
Sensingp. 166
Summaryp. 168
Referencesp. 169
Adaptive Optofluidic Devicesp. 177
Switching and Beam Deflectionp. 178
Switches Based on Total Internal Reflectionp. 179
Grating-Based Switchesp. 182
Deflectors and Beam Scannersp. 183
Membrane-Based Tunable Optofluidicsp. 184
Mechanics of Pressure-Actuated Polymerp. 184
Adaptive Optofluidic Lensesp. 187
Composite Membrane Devicesp. 191
Summaryp. 193
Referencesp. 194
Bio-Inspired Fluidic Lenses for Imaging and Integrated Opticsp. 201
Bio-Inspired Fluidic Lens: Structures and Operationsp. 203
Graded-Index-Tunable Fluidic Lensp. 203
Curvature-Tunable Fluidic Lensp. 205
Fluidic Lens Fabricationp. 208
Lens Profile Analysisp. 208
Fluidic Lens for Imagingp. 211
Auto-Focusing Miniaturized Universal Imagerp. 212
Fluidic Zoom Lensp. 215
Application Example: Surgical Camerap. 216
Summaryp. 219
Bio-Inspired Intraocular Lens-Restoration of Human Visionp. 219
Optical Simulation of Eye Modelp. 220
Experimental Resultsp. 221
Mechanical Modeling of Fluidic Intraocular Lensp. 225
Summaryp. 226
Liquid Molding Technique-Prototyping of Aspherical Lensesp. 226
Tunable Liquid-Filled Molding Technologyp. 226
Summaryp. 228
Fluidic Lens for Lab-on-a-Chip and Micro-Total-Analysis Systemsp. 230
Summaryp. 235
Referencesp. 236
Optofluidic Dye Lasersp. 241
Introductionp. 241
Laser Basicsp. 243
Dye Lasersp. 244
From Macro to Microp. 246
Laser Resonatorsp. 246
Tunable Lasersp. 249
Dye Bleachingp. 253
Summaryp. 256
Referencesp. 257
Optofluidic Microscopep. 259
Introductionp. 259
Operating Principlep. 260
Prototype Evaluationsp. 262
Caenorhabditis elegans Imagingp. 262
Cell Imagingp. 268
Potential Applicationsp. 269
Referencesp. 270
Optofluidic Resonatorsp. 271
Optofluidic Resonatorsp. 271
Resonatorsp. 271
Fabrication Methodsp. 280
Optofluidic Resonator Devicesp. 282
Summaryp. 288
Referencesp. 288
High-Q Resonant Cavity Biosensorsp. 291
Overview of Resonant Microcavitiesp. 291
Introduction to Optical Resonant Devicesp. 291
Whispering Gallery Mode Devicesp. 295
Biosensing with Optical Microcavitiesp. 299
Resonant Cavity-Detection Mechanismsp. 300
Optimization for Detectionp. 301
Experimental Examples of Detectionp. 304
Summary and Future Outlookp. 309
Referencesp. 309
Optofluidic Plasmonic Devicesp. 313
Basic Properties of Surface Plasmon Polaritonsp. 314
SPP Dispersion Relation at a Metal-Dielectric Interfacep. 315
Optical Excitation of SPPp. 316
Fabrication of Optofluidic Plasmonic Chipsp. 320
Deposition of the Metal Filmp. 320
Lithographic Definition of the Nanohole Patternp. 320
Etchingp. 322
Fabrication of Microfluidic Channelsp. 323
Experimental Observation of SPP Coupling, Propagation and Focusing, and SPP Mode Splittingp. 325
Observation of SPP Couplingp. 325
Time-Resolved Imaging of SPP Propagationp. 328
SPPFocusingp. 330
Degenerate Mode Splittingp. 331
Resonant SPP Sensorsp. 334
Angular Interrogation Sensing Experimentsp. 335
SPR Sensor with Wavelength Interrogationp. 338
Summary and Discussionp. 344
Referencesp. 345
Optical Manipulation and Applications in Optofluidicsp. 349
Introduction to Optical Manipulationp. 349
Theoretical Considerationsp. 352
Experimental Considerations for Single-Beam Optical Tweezersp. 355
The Counter-Propagating Beam Trapp. 356
Advanced Light Fieldsp. 358
Multiple Trapping Techniquesp. 359
Bessel Light Modesp. 362
Laguerre-Gaussian Light Modesp. 363
Optical Manipulation for Optofludicsp. 366
Optical Actuation, Microrheology, and Optically Trapped Sensorsp. 367
Microfluidic Sortingp. 370
Optical Trapping in Near-Field Waveguidesp. 371
Conclusionp. 373
Acknowledgmentsp. 374
Referencesp. 374
Optofluidic Chemical Analysis and Synthesisp. 381
Optofluidic Chemical Analysisand Synthesisp. 382
Flow Injection Analysisp. 384
Fluorescence-Based Analysisp. 386
Devicesp. 387
Summaryp. 390
Referencesp. 391
Optofluidic Maskless Lithography and Guided Self-Assemblyp. 393
Optofluidic Maskless Lithographyp. 393
Droplet-Based Fabrication of Microparticlesp. 394
Patterned Microparticle Generationp. 396
Optofluidic Maskless Lithography (OFML)p. 398
Optofluidic-Guided Self-Assembly: Railed Microfluidicsp. 405
Self-Assemblyp. 405
Rail-Guided Fluidic Self-Assemblyp. 408
Referencesp. 415
Reconfigurable Photonic Crystal Circuits Using Microfluidicsp. 421
Introductionp. 421
From the Infiltration of Photonic Crystals to the Concept of Reconfigurable Circuitsp. 421
Optofluidics and Planar Photonic Crystalsp. 425
Designing High-Q Cavities Using Air-Hole Infiltrationp. 428
Model and Numerical Methodsp. 430
Numerical Resultsp. 431
Discussion-Theoryp. 436
Microfluidic PhC Componentsp. 437
Infiltration Methodp. 437
Evanescent Couplingp. 438
Microfluidic Cavitiesp. 440
Conclusion and Outlookp. 449
Acknowledgmentsp. 450
Referencesp. 451
Micro and Nano Optofluidic Flow Manipulationp. 459
Introduction to Optofluidic FlowManipulationp. 459
Optical Manipulation of Liquid Surface Tensionp. 460
Photochemical Control of Surface Tensionp. 462
Optoelectronic Liquid Surface Wettingp. 466
Photothermal Fluidic Actuationsp. 470
Fluidic Actuation via Photothermal Nanoparticlesp. 471
Fluidic Actuation via Photothermal Nanocarpetp. 475
Optofluidic Particle Manipulationp. 477
Photothermophoretic Molecular Trappingp. 479
Optofluidic Dielectrophoretic Manipulationp. 483
Conclusionp. 489
Referencesp. 490
Indexp. 493
Table of Contents provided by Ingram. All Rights Reserved.

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program