Programming Massively Parallel Processors : A Hands-On Approach

by ;
  • ISBN13:


  • ISBN10:


  • Edition: 2nd
  • Format: Paperback
  • Copyright: 12/14/2012
  • View Upgraded Edition

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $59!
    Your order must be $59 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
  • We Buy This Book Back!
    In-Store Credit: $5.25
    Check/Direct Deposit: $5.00
List Price: $79.94 Save up to $54.94
  • Rent Book $25.00
    Add to Cart Free Shipping


Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.


This best-selling guide to CUDA and GPU parallel programming has been revised with more parallel programming examples, commonly-used libraries, and explanations of the latest tools. With these improvements, the book retains its concise, intuitive, practical approach based on years of road-testing in the authors' own parallel computing courses. Programming Massively Parallel Processors: A Hands-on Approach shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Various techniques for constructing parallel programs are explored in detail. Case studies demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. Updates in this edition include: New coverage of CUDA 4.0, improved performance, enhanced development tools, increased hardware support, and more Increased coverage of related technology OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism Two new case studies explore the latest applications of CUDA and GPUs for scientific research and high-performance computing

Rewards Program

Write a Review