did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780470878286

Protein Oxidation and Aging

by ; ; ;
  • ISBN13:

    9780470878286

  • ISBN10:

    0470878282

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2013-01-04
  • Publisher: Wiley

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $197.28 Save up to $59.18
  • Rent Book $138.10
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-4 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

Supplemental Materials

What is included with this book?

Summary

As the lifespan of humans increases, research into aging and its related pathological conditions is gaining momentum. This book is the first to explain protein oxidation and the aging process, focusing on the connection between protein disturbances and the oxidative stress that cells continually undergo. Coverage includes major and novel techniques that can be used to analyze protein oxidation, how protein oxidation products can be biomarkers of aging, and the very broad involvement of protein oxidation in such diseases as Alzheimer's, Parkinson's, cardiovascular disease, diabetes, and cancer.

Author Biography

TILMAN GRUNE, MD, is Full Professor and Director of the Institute of Nutrition at Friedrich Schiller University Jena. His research examines the biological phenomenon of oxidative stress. In particular, his research group has been investigating the oxidative stress response of cells and organisms and the protective influence of antioxidants.

BETUL CATALGOL, MD, is Assistant Professor in the Faculty of Medicine and the Department of Biochemistry at Marmara University. She is coauthor of Proteasome and Neurodegenerative Diseases, Proteasome and Cancer, and Protein Carbonyl Measurement by Enzyme-Linked Immunosorbent Assay.

TOBIAS JUNG, PhD, is a Research Assistant at Friedrich Schiller University Jena. He is coauthor of Structure of the Proteasome.

Table of Contents

Preface

1 Oxidative stress and protein oxidation

1.1 The large variety of protein oxidation products

1.1.1 Primary protein oxidation products

1.1.1.1 Carbon-centred radicals:

1.1.1.2   Thiyl radicals

1.1.1.3   Aromatic ring derived radicals

1.1.1.4   Transfer between sites

1.1.2 Reactive compounds mediating protein oxidation

1.1.2.1 Hydroxyl Radical

1.1.2.2   Superoxide radicals

1.1.2.3   Hydrogen peroxide

1.1.2.4   Lipid peroxyl radicals

1.1.2.5   Alkoxyl radicals

1.1.2.6   •NO and peroxynitrite

1.1.2.7   Hypochlorous acid

1.1.3 Enzymatic systems playing a role in protein oxidation

1.1.3.1 NADPH oxidase

1.1.3.2 Lipoxygenases

1.1.3.3   Protein kinases

1.1.3.4   Mixed function oxidases

1.1.3.5   Nitric oxide synthetase (NOS)

1.1.3.6   Myeloperoxidase

1.1.3.7   Cyclooxygenase

1.1.4 Protein oxidation in cells and cellular structures

1.1.4.1 Protein oxidation in blood and blood cells

1.1.4.2   Protein oxidation in glycolytic enzyes and mitochondria

1.1.4.2.1 Glycolytic enzymes

1.1.4.2.2 Aconitase

1.1.4.2.3 Carnitine palmitoyltransferase-1

1.1.4.3   Cytochrome P-450 enyzmes

1.1.4.4   Protein oxidation in the nucleus and chromatin

1.1.4.4.1 Histone modification

1.1.4.5   Protein oxidation in the endoplasmic reticulum

1.1.4.6   Protein oxidation in peroxisomes

1.2 Reversible oxidative modifications

1.2.1 Methionine sulfoxides and methionine modifications

1.2.2 Cysteine modifications and disulfide bond formation

1.2.3 Surface hydrophobicity modifications

1.3 Irreversible protein modification products

1.3.1 Protein oxidation and enzymatic post-translational modifications

1.3.2 Deamidation and transamination

1.3.3 Protein glycation and AGEs

1.3.3.1 The RAGE receptor

1.3.3.2   Nε-Carboxymethyllysine and Nε-Carboxyethyllysine

1.3.3.3   Pentosidine

1.3.4 Racemisation

1.3.5 Nitrosylation

1.3.6 Tyrosyl radicals and nitrotyrosines

1.3.6.1 Dityrosines

1.3.7 Protein carbonyls

1.3.8.Aldehyde-protein reactions

1.3.8.1 MDA-protein adducts

1.3.8.2   4-hydroxy-2,3-nonenal-protein adducts

1.3.9 Cross-linking of proteins

1.4 The oxidation of extracellular matrix, membrane and cytoskeletal proteins

1.4.1 Collagen

1.4.2 Elastin

1.4.3 The oxidation of membrane proteins

1.4.4 Band 3

1.4.5 Actin

1.5. Mechanisms and factors influencing the formation of protein oxidation products

1.5.1 Redox status

1.5.2 Protein turnover

1.5.3 Metal catalyzed oxidation (MCO)

1.5.4 Heat shock proteins

1.6 Protein aggregates: formation and specific metabolic effects

1.6.1 Accumulation of oxidized proteins

1.6.2 Lipofuscin and ceroid

1.7 Methods to measure protein oxidation products in research laboratories

1.7.1 Determination of methionine sulfoxide reduction and methionine oxidation

1.7.2 Determination of protein glycation and adducts

1.7.3 Analysis of isoaspartate formation

1.7.4 Measurement of protein fragmentation products

1.7.5 Measurement of tyrosine oxidation

1.7.6 Protein carbonyl measurement

1.7.7 Radioactive labeling protocols for proteolysis and aggregation measurements

1.7.8 Standard chromatographic methods for the measurement of protein modifications

1.7.9 Liquid Chromatography Techniques Supported by Mass Spectrometry

1.7.10 GC-MS

1.7.11 Analysis of protein-bound 3-nitrotyrosine by a competitive ELISA method

1.7.12 Protein oxidation products as biomarkers in clinical science Literature cited

2 Removal of oxidized proteins

2.1 The limited repair of some oxidized proteins

2.1.1 Thiol repair

2.1.2 Methionine sulfoxide reductases

2.2 Proteolysis

2.2.1 The proteasomal system and its role in the degradation of oxidized proteins

2.2.1.1 The ubiquitin-proteasome-system (UPS)

2.2.1.2   The components of the UPS

2.2.1.2.1 The 20S proteasome

2.2.1.2.2 The inducible forms of the proteasome and their function

2.2.1.2.3 The 11S regulator

2.2.1.2.4 The 19S regulator and the UPS

2.2.1.2.5 The PA200 regulator protein

2.2.1.2.6 Cellular proteasome inhibitors

2.2.1.3   Low-molecular weight protesome inhibitors

2.2.1.4 Cellular function of the UPS

2.2.1.5 The degradation of oxidized proteins - a function of the 20S proteasome

2.2.1.5.1 Early studies on the turnover of oxidized proteins

2.2.1.5.2 In vitro studies and the recognition of oxidized proteins by the proteasome

2.2.1.5.3 Cellular and in vivo studies of the degradation of oxidized proteins

2.2.1.5.4 The inhibition of the proteasome by cross-linked oxidized proteins and proteasomal regulation during oxidative stress

2.2.2 The role of other proteases in the fate of oxidized proteins

2.2.2.1 Lysosomal degradation of oxidized proteins and the role of autophagy

2.2.2.2   Mitochondrial degradation of oxidized proteins and the Lon protease

2.2.2.3   The uptake of extracellular oxidized proteins and the role of the proteasome in their degradation

2.2.2.4   Calpains and the degradation of oxidized proteins

2.2.2.5   Role of heat shock proteins in protein degradation

2.3 Conclusion

Literature cited

3 Protein oxidation and aging - different model systems and affecting factors

3.1 Protein oxidation during aging: lower organisms and cellular model systems

3.1.1 Yeast

3.1.1.1   Saccharomyces cerevisiae

3.1.1.2   Schizosaccharomyces pombe

3.1.2. Podospora anserina

3.1.3 Bacteria

3.1.3.1 Escherichia coli

3.1.4 Cell cultures

3.2 Non-mammalian model systems and the accumulation of oxidized proteins during aging

3.2.1 Caenorhabditis elegans

3.2.2 Drosophila melanogaster

3.3.3 Aquatic systems

3.3.4 Plants

3.3.5 Amphibians

3.3 Age related protein oxidation in humans and mammals

3.3.1 Humans

3.3.2 Animals

3.3.2.1 Rabbits

3.3.2.2 Mice

3.3.2.3 Rats

3.3.2.4   Gerbils

3.3.2.5   Primates

3.4.Potential inherited factors influencing protein oxidation during aging

3.4.1 Genetic instability, mutations and polymorphism

3.4.2 Gender

3.4.3 Vitagenes

3.4.4 Signal transduction and transcription factors

3.4.5 Ion channels

3.5 Age-related protein aggregate formation in model systems

3.6 Environmental factors affecting healthy aging

3.6.1 UV induced skin photoaging and skin aging

3.6.2 Pesticides

3.6.3 Exercise

3.6.4 Dietary factors and prevention strategies

3.6.4.1 Melatonin

3.6.4.2   Growth hormone

3.6.4.3   Bio-trace metal elements - Zinc

3.6.4.4   Ascorbic acid

3.6.4.5   Vitamin E

3.6.4.6   Carnitine and acetyl-L-carnitine

3.6.4.7   Homocysteine  

3.6.4.8   Ubiquinone/coenzyme Q10

3.6.4.9   Carnosine

3.6.4.10 Lipoic acid

3.6.4.11 N-Acetyl-L-cysteine

3.6.5 Pharmacological response and biotransformation in aging

3.6.5.1 Plant extracts

3.6.5.2   Polyphenols and flavonoids

3.6.5.3   Resveratrol

3.6.5.4   AGE and ALE inhibitors

3.6.6 Caloric restriction

3.7 Repair and degradation of oxidized proteins during aging

4 Protein oxidation in some age-related diseases

4.1 Protein oxidation during neurodegeneration and neurological diseases

4.1.1.Brain aging

4.1.2 Alzheimer’s disease

4.1.3 Parkinson’s disease

4.1.4 Huntington’s disease

4.1.5 Stroke

4.1.6 Amyotrophic lateral sclerosis

4.2 Protein oxidation in cardiac diseases

4.2.1 Ischemia-reperfusion

4.2.2 Atherosclerosis

4.3 Protein oxidation in diabetes

4.4 Protein oxidation in degenerative arthritis

4.5 Protein oxidation in muscle wasting and sarcopenia

4.6 Protein oxidation in destructive eye diseases

4.6.1 Age related macular degeneration

4.6.2 Cataract

4.7 Protein oxidation in osteoporosis

4.8 Protein oxidation in cancer

4.8.1 Proteasome inhibitors in cancer therapy

4.9 Other diseases

4.9.1 Premature aging diseases Progeria and Werner’s syndrome

4.9.2 Renal failure and haemodialysis in elderly people

4.9.3 Obesity

4.9.4 Idiopathic pulmonary fibrosis

4.9.5 Presbycusis (age-related hear loss)

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program