CART

(0) items

Proteins in Solution and at Interfaces : Methods and Applications in Biotechnology and Materials Science,9780470952511
This item qualifies for
FREE SHIPPING!

FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Proteins in Solution and at Interfaces : Methods and Applications in Biotechnology and Materials Science

by ; ; ;
Edition:
1st
ISBN13:

9780470952511

ISBN10:
0470952512
Format:
Hardcover
Pub. Date:
3/25/2013
Publisher(s):
Wiley
List Price: $207.99

Rent Textbook

(Recommended)
 
Term
Due
Price
$145.59

Buy New Textbook

Currently Available, Usually Ships in 24-48 Hours
$202.79

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

More New and Used
from Private Sellers
Starting at $189.32

Questions About This Book?

Why should I rent this book?
Renting is easy, fast, and cheap! Renting from eCampus.com can save you hundreds of dollars compared to the cost of new or used books each semester. At the end of the semester, simply ship the book back to us with a free UPS shipping label! No need to worry about selling it back.
How do rental returns work?
Returning books is as easy as possible. As your rental due date approaches, we will email you several courtesy reminders. When you are ready to return, you can print a free UPS shipping label from our website at any time. Then, just return the book to your UPS driver or any staffed UPS location. You can even use the same box we shipped it in!
What version or edition is this?
This is the 1st edition with a publication date of 3/25/2013.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. You may receive a brand new copy, but typically, only the book itself.

Summary

Proteins in solution and at interfaces are increasingly used in exciting new applications, from biomimetic materials to nanoparticle patterning. This book surveys the state-of-the-art in the field, providing scientists in diverse areas with a comprehensive and modern analysis of the techniques used in protein characterization, as well as insight into the most important applications. Topics include protein and protein aggregate structure; computational and experimental techniques for the study of protein structure, aggregation, and adsorption; proteins in non-standard conditions; and biotechnological applications.

Author Biography

JUAN M. RUSO is currently Associate Professor in the Department of Applied Physics at the University of Santiago de Compostela, Spain. He has contributed to more than 100 publications on a broad range of physical, chemical, and biophysics studies. His research interests include protein ligand interactions, thermal stabilization of protein, Phase behavior, and self-assembly processes in soft matter systems, biocompatible materials design, and nanocarrier design for targeted drug delivery.

ÁNGEL PIÑEIRO is an IPP Research Fellow at the Department of Applied Physics of the University of Santiago de Compostela, Spain. His current research interests include the design and characterization of self-assembled systems as well as the study of macromolecules in solution, embedded in membranes or at interfaces. His work is mainly based on computational methods including multiscale molecular dynamics simulations and the development of software for the analysis of different experimental properties.

Table of Contents

PREFACE ix

CONTRIBUTORS xiii

PART I

1 X-Ray Crystallography of Biological Macromolecules: Fundamentals and Applications 3
Antonio L. Llamas-Saiz and Mark J. van Raaij

2 Nuclear Magnetic Resonance Methods for Studying Soluble, Fibrous, and Membrane-Embedded Proteins 23
Victoria A. Higman

3 Small-Angle X-Ray Scattering Applied to Proteins in Solution 49
Leandro Ramos Souza Barbosa, Francesco Spinozzi, Paolo Mariani, and Rosangela Itri

4 Analyzing the Solution State of Protein Structure, Interactions, and Ligands by Spectroscopic Methods 73
Veronica I. Dodero and Paula V. Messina

5 Resolving Membrane-Bound Protein Orientation and Conformation by Neutron Reflectivity 99
Hirsh Nanda

6 Investigating Protein Interactions at Solid Surfaces—In Situ, Nonlabeling Techniques 113
Olof Svensson, Javier Sotres, and Alejandro Barrantes

7 Calorimetric Methods to Characterize the Forces Driving Macromolecular Association and Folding Processes 139
Conceic¸ ˜ao A.S.A. Minetti, Peter L. Privalov, and David P. Remeta

8 Virtual Ligand Screening Against Comparative Models of Proteins 179
Hao Fan

9 Atomistic and Coarse-Grained Molecular Dynamics Simulations of Membrane Proteins 193
Thomas J. Piggot, Peter J. Bond, and Syma Khalid

PART II

10 Preparation of Nanomaterials Based on Peptides and Proteins 209
Yujing Sun and Zhuang Li

11 Natural Fibrous Proteins: Structural Analysis, Assembly, and Applications 219
Mark J. van Raaij and Anna Mitraki

12 Amyloid-Like Fibrils: Origin, Structure, Properties, and Potential Technological Applications 233
Pablo Taboada, Silvia Barbosa, Josue Juarez, Manuel-Alatorre Meda, and V?ctor Mosquera

13 Proteins and Peptides in Biomimetic Polymeric Membranes 283
Alfredo Gonzalez-Perez

14 Study of Proteins and Peptides at Interfaces By Molecular Dynamics Simulation Techniques 291
David Poger and Alan E. Mark

15 A Single-Molecule Approach to Explore the Role of the Solvent Environment in Protein Folding 315
Katarzyna Tych and Lorna Dougan

16 Enhanced Functionality of Peroxidases By Its Immobilization at The Solid–Liquid Interface of Mesoporous Materials and Nanoparticles 335
Jose Campos-Teran, Iker Inarritu, Jorge Aburto, and Eduardo Torres

17 Superactivity of Enzymes in Supramolecular Hydrogels 353
Ye Zhang and Bing Xu

18 Surfactant Proteins and Natural Biofoams 365
Malcolm W. Kennedy and Alan Cooper

19 Promiscuous Enzymes 379
Luis F. Olguin

20 Thermodynamics and Kinetics of Mixed Protein/Surfactant Adsorption Layers at Liquid Interfaces 389
Reinhard Miller, E.V. Aksenenko, V.S. Alahverdjieva, V.B. Fainerman, C.S. Kotsmar, J. Kragel, M.E. Leser, J. Maldonado-Valderrama, V. Pradines, C. Stefaniu, A. Stocco, and R. Wustneck

21 Application of Force Spectroscopy Methods to the Study of Biomaterials 429
Chuan Xu and Erika F. Merschrod S.

22 Protein Gel Rheology 437
Katie Weigandt and Danilo Pozzo

23 Exploring Biomolecular Thermodynamics in Aqueous and Nonaqueous Environments using Time-Resolved Photothermal Methods 449
Randy W. Larsen, Carissa M. Vetromile, William A. Maza, Khoa Pham, Jaroslava Miksovska

INDEX 473



Please wait while the item is added to your cart...