9780789757852

R for Microsoft® Excel Users Making the Transition for Statistical Analysis

by
  • ISBN13:

    9780789757852

  • ISBN10:

    0789757850

  • Edition: 1st
  • Format: Paperback
  • Copyright: 11/18/2016
  • Publisher: Que Publishing

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $59!
    Your order must be $59 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $39.99 Save up to $10.00
  • Rent Book $29.99
    Add to Cart Free Shipping

    TERM
    PRICE
    DUE

Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Summary

 Microsoft Excel can perform many statistical analyses, but thousands of business users and analysts are now reaching its limits. R, in contrast, can perform virtually any imaginable analysis—if you can get over its learning curve. In R for Microsoft® Excel Users, Conrad Carlberg shows exactly how to get the most from both programs.

 

Drawing on his immense experience helping organizations apply statistical methods, Carlberg reviews how to perform key tasks in Excel, and then guides you through reaching the same outcome in R—including which packages to install and how to access them. Carlberg offers expert advice on when and how to use Excel, when and how to use R instead, and the strengths and weaknesses of each tool.

 

Writing in clear, understandable English, Carlberg combines essential statistical theory with hands-on examples reflecting real-world challenges. By the time you’ve finished, you’ll be comfortable using R to solve a wide spectrum of problems—including many you just couldn’t handle with Excel.

 

• Smoothly transition to R and its radically different user interface

• Leverage the R community’s immense library of packages

• Efficiently move data between Excel and R

• Use R’s DescTools for descriptive statistics, including bivariate analyses

• Perform regression analysis and statistical inference in R and Excel

• Analyze variance and covariance, including single-factor and factorial ANOVA

• Use R’s mlogit package and glm function for Solver-style logistic regression

• Analyze time series and principal components with R and Excel


Author Biography

Conrad Carlberg (www.conradcarlberg.com) is a nationally recognized expert on quantitative analysis and on data analysis and management applications such as Microsoft Excel, SAS, and Oracle. He holds a Ph.D. in statistics from the University of Colorado and is a many-time recipient of Microsoft's Excel MVP designation.

 

Carlberg is a Southern California native. After college he moved to Colorado, where he worked for a succession of startups and attended graduate school. He spent two years in the Middle East, teaching computer science and dodging surly camels. After finishing graduate school, Carlberg worked at US West (a Baby Bell) in product management and at Motorola.

 

In 1995 he started a small consulting business which provides design and analysis services to companies that want to guide their business decisions by means of quantitative analysis–approaches that today we group under the term "analytics." He enjoys writing about those techniques and, in particular, how to carry them out using the world's most popular numeric analysis application, Microsoft Excel.

Table of Contents

1. Preparing Data for Analysis
2. Simple Descriptive Analysis
3. Regression Analysis
4. Analysis of Variance and Covariance
5. Logistic Regression
6. Time Series Analysis
7. Principal Components Analysis

Rewards Program

Write a Review