9780470080245

Rocket Propulsion Elements

by ;
  • ISBN13:

    9780470080245

  • ISBN10:

    0470080248

  • Edition: 8th
  • Format: Hardcover
  • Copyright: 2/2/2010
  • Publisher: Wiley

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $59!
    Your order must be $59 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
  • We Buy This Book Back!
    In-Store Credit: $10.50
    Check/Direct Deposit: $10.00
List Price: $145.00 Save up to $72.50
  • Rent Book $72.50
    Add to Cart Free Shipping

    TERM
    PRICE
    DUE

Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Summary

The definitive text on rocket propulsion—now revised to reflect advancements in the field

For sixty years, Sutton's Rocket Propulsion Elements has been regarded as the single most authoritative sourcebook on rocket propulsion technology. As with the previous edition, coauthored with Oscar Biblarz, the Eighth Edition of Rocket Propulsion Elements offers a thorough introduction to basic principles of rocket propulsion for guided missiles, space flight, or satellite flight. It describes the physical mechanisms and designs for various types of rockets' and provides an understanding of how rocket propulsion is applied to flying vehicles.

Updated and strengthened throughout, the Eighth Edition explores:

-The fundamentals of rocket propulsion, its essential technologies, and its key design rationale

-The various types of rocket propulsion systems, physical phenomena, and essential relationships

-The latest advances in the field such as changes in materials, systems design, propellants, applications, and manufacturing technologies, with a separate new chapter devoted to turbopumps

-Liquid propellant rocket engines and solid propellant rocket motors, the two most prevalent of the rocket propulsion systems, with in-depth consideration of advances in hybrid rockets and electrical space propulsion

Comprehensive and coherently organized, this seminal text guides readers evenhandedly through the complex factors that shape rocket propulsion, with both theory and practical design considerations. Professional engineers in the aerospace and defense industries as well as students in mechanical and aerospace engineering will find this updated classic indispensable for its scope of coverage and utility.

Author Biography

George P. Sutton is a consultant for the aerospace industry. He formerly served as executive director of engineering at Rocketdyne (Rocketdyne Division of The Boeing Company, now Pratt & Whitney Rocketdyne) and as a laboratory associate at Lawrence Livermore National Laboratory.

Oscar Biblarz is a Professor Emeritus in the Department of Mechanical and Astronautical Engineering at the Naval Postgraduate School in Monterey, California.

Table of Contents

PREFACE.

1 Classification.

1.1. Duct Jet Propulsion.

1.2. Rocket Propulsion.

1.3. Applications of Rocket Propulsion.

References.

2 Definitions and Fundamentals.

2.1. Definitions.

2.2. Thrust.

2.3. Exhaust Velocity.

2.4. Energy and Efficiencies.

2.5. Multiple Propulsion Systems.

2.6. Typical Performance Values.

Problems.

Symbols.

References.

3 Nozzle Theory and Thermodynamic Relations.

3.1. Ideal Rocket.

3.2. Summary of Thermodynamic Relations.

3.3. Isentropic Flow Through Nozzles.

3.4. Nozzle Configurations.

3.5. Real Nozzles.

3.6. Nozzle Alignment.

Problems.

Symbols.

References.

4 Flight Performance.

4.1. Gravity-Free Drag-Free Space Flight.

4.2. Forces Acting on a Vehicle in the Atmosphere.

4.3. Basic Relations of Motion.

4.4. Space Flight.

4.5. Flight Maneuvers.

4.6. Effect of Propulsion System on Vehicle Performance.

4.7. Flight Vehicles.

4.8. Military Missiles.

4.9. Flight Stability.

Problems.

Symbols.

References.

5 Chemical Rocket Propellant Performance Analysis.

5.1. Background and Fundamentals.

5.2. Analysis of Chamber or Motor Case Conditions.

5.3. Analysis of Nozzle Expansion Processes.

5.4. Computer-Assisted Analysis.

5.5. Results of Thermochemical Calculations.

Problems.

Symbols.

References.

6 Liquid Propellant Rocket Engine Fundamentals.

6.1. Types of Propellants.

6.2. Propellant Tanks.

6.3. Propellant Feed Systems.

6.4. Gas Pressure Feed Systems.

6.5. Tank Pressurization.

6.6. Turbopump Feed Systems and Engine Cycles.

6.7. Rocket Engines for Maneuvering, Orbit Adjustments, or Attitude Control.

6.8. Engine Families.

6.9. Valves and Pipelines.

6.10. Engine Support Structure.

Problems.

Symbols.

References.

7 Liquid Propellants.

7.1. Propellant Properties.

7.2. Liquid Oxidizers.

7.3. Liquid Fuels.

7.4. Liquid Monopropellants.

7.5. Gelled Propellants.

7.6. Gaseous Propellants.

7.7. Safety and Environmental Concerns.

Problems.

Symbols.

References.

8 Thrust Chambers.

8.1. Injectors.

8.2. Combustion Chamber and Nozzle.

8.3. Low-Thrust Rocket Thrust Chambers or Thrusters.

8.4. Materials and Fabrication.

8.5. Heat Transfer Analysis.

8.6. Starting and Ignition.

8.7. Random Variable Thrust.

8.8. Sample Thrust Chamber Design Analysis.

Problems.

Symbols.

References.

9 Liquid Propellant Combustion and Its Stability.

9.1. Combustion Process.

9.2. Analysis and Simulation.

9.3. Combustion Instability.

Problems.

References.

10 Turbopumps and Their Gas Supplies.

10.1. Introduction.

10.2. Descriptions of Several Turbopumps.

10.3. Selection of Turbopump Configuration.

10.4. Flow, Shaft Speeds, Power, and Pressure Balances.

10.5. Pumps.

10.6. Turbines.

10.7. Approach to Turbopump Preliminary Design.

10.8. Gas Generators and Preburners.

Problems.

Symbols.

References.

11 Engine Systems, Controls, and Integration.

11.1. Propellant Budget.

11.2. Performance of Complete or Multiple Rocket Propulsion Systems.

11.3. Engine Design.

11.4. Engine Controls.

11.5. Engine System Calibration.

11.6. System Integration and Engine Optimization.

Problems.

Symbols.

References.

12 Solid Propellant Rocket Fundamentals.

12.1. Basic Relations and Propellant Burning Rate.

12.2. Other Performance Issues.

12.3. Propellant Grain and Grain Configuration.

12.4. Propellant Grain Stress and Strain.

12.5. Attitude Control and Side Maneuvers with Solid Propellant Rocket Motors.

Problems.

Symbols.

References.

13 Solid Propellants.

13.1. Classification.

13.2. Propellant Characteristics.

13.3. Hazards.

13.4. Propellant Ingredients.

13.5. Other Propellant Categories.

13.6. Liners, Insulators, and Inhibitors.

13.7. Propellant Processing and Manufacture.

Problems.

References.

14 Solid Propellant Combustion and Its Stability.

14.1. Physical and Chemical Processes.

14.2. Ignition Process.

14.3. Extinction or Thrust Termination.

14.4. Combustion Instability.

Problems.

References.

15 Solid Rocket Components and Motor Design.

15.1. Motor Case.

15.2. Nozzles.

15.3. Igniter Hardware.

15.4. Rocket Motor Design Approach.

Problems.

References.

16 Hybrid Propellant Rockets.

16.1. Applications and Propellants.

16.2. Interior Hybrid Motor Ballistics.

16.3. Performance Analysis and Grain Configuration.

16.4. Design Example.

16.5. Combustion Instability.

Problems.

Symbols.

References.

17 Electric Propulsion.

17.1. Ideal Flight Performance.

17.2. Electrothermal Thrusters.

17.3. Nonthermal Electrical Thrusters.

17.4. Optimum Flight Performance.

17.5. Mission Applications.

17.6. Electric Space-Power Supplies and Power-Conditioning Systems.

Problems.

Symbols.

References.

18 Thrust Vector Control.

18.1. TVC Mechanisms with a Single Nozzle.

18.2. TVC with Multiple Thrust Chambers or Nozzles.

18.3. Testing.

18.4. Integration with Vehicle.

Problems.

References.

19 Selection of Rocket Propulsion Systems.

19.1. Selection Process.

19.2. Criteria for Selection.

19.3. Interfaces.

References.

20 Rocket Exhaust Plumes.

20.1. Plume Appearance and Flow Behavior.

20.2. Plume Effects.

20.3. Analysis and Mathematical Simulation.

Problems.

References.

21 Rocket Testing.

21.1. Types of Tests.

21.2. Test Facilities and Safeguards.

21.3. Instrumentation and Data Management.

21.4. Flight Testing.

21.5. Postaccident Procedures.

References.

Appendix 1 Conversion Factors and Constants.

Appendix 2 Properties of the Earth's Standard Atmosphere.

Appendix 3 Summary of Key Equations for Ideal Chemical Rockets.

Index.

Rewards Program

Customer Reviews

Fantastic resource July 12, 2011
by
This textbook is wonderful for non-specialists; you can study it at home and learn a lot. The textbook is thoughtfully laid out, and exhaustively covers pretty much every area of rocket propulsion. It gives a clear idea not only of the principles of rocket propulsion, but also of the current state of the art. It presents the material in a clear and concise manner without losing the reader. This is a must have for any rocket scientists worth every penny!
Flag Review
Please provide a brief explanation for why you are flagging this review:
Submit
Your submission has been received. We will inspect this review as soon as possible. Thank you for your input!
Rocket Propulsion Elements: 4 out of 5 stars based on 1 user reviews.

Write a Review