CART

(0) items

Semiconductor Devices: Physics and Technology, 3rd Edition,9780470537947
This item qualifies for
FREE SHIPPING!

FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Semiconductor Devices: Physics and Technology, 3rd Edition

by ;
Edition:
3rd
ISBN13:

9780470537947

ISBN10:
0470537949
Format:
Hardcover
Pub. Date:
7/1/2011
Publisher(s):
Wiley
List Price: $245.70

Rent Textbook

(Recommended)
 
Term
Due
Price
$122.85

Buy Used Textbook

Usually Ships in 2-3 Business Days
U9780470537947
$171.99

Buy New Textbook

Currently Available, Usually Ships in 24-48 Hours
N9780470537947
$234.42

eTextbook


 
Duration
Price
$77.22
More New and Used
from Private Sellers
Starting at $98.05
See Prices

Questions About This Book?

Why should I rent this book?
Renting is easy, fast, and cheap! Renting from eCampus.com can save you hundreds of dollars compared to the cost of new or used books each semester. At the end of the semester, simply ship the book back to us with a free UPS shipping label! No need to worry about selling it back.
How do rental returns work?
Returning books is as easy as possible. As your rental due date approaches, we will email you several courtesy reminders. When you are ready to return, you can print a free UPS shipping label from our website at any time. Then, just return the book to your UPS driver or any staffed UPS location. You can even use the same box we shipped it in!
What version or edition is this?
This is the 3rd edition with a publication date of 7/1/2011.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Used copy of this book is not guaranteed to inclue any supplemental materials. Typically, only the book itself is included.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. You may receive a brand new copy, but typically, only the book itself.

Summary

Semiconductor Devices: Physics and Technology, Third Edition is an introduction to the physical principles of modern semiconductor devices and their advanced fabrication technology. It begins with a brief historical review of major devices and key technologies and is then divided into three sections: semiconductor material properties, physics of semiconductor devices and processing technology to fabricate these semiconductor devices.

Table of Contents

Preface vii

Acknowledgments ix

Chapter 0 Introduction 1

0.1 Semiconductor Devices 1

0.2 Semiconductor Technology 6

Summary 12

PART I SEMICONDUCTOR PHYSICS

Chapter 1 Energy Bands and Carrier Concentration in Thermal Equilibrium 15

1.1 Semiconductor Materials 15

1.2 Basic Crystal Structures 17

1.3 Valence Bonds 22

1.4 Energy Bands 23

1.5 Intrinsic Carrier Concentration 29

1.6 Donors and Acceptors 34

Summary 40

Chapter 2 Carrier Transport Phenomena 43

2.1 Carrier Drift 43

2.2 Carrier Diffusion 53

2.3 Generation and Recombination Processes 56

2.4 Continuity Equation 62

2.5 Thermionic Emission Process 68

2.6 Tunneling Process 69

2.7 Space-Charge Effect 71

2.8 High-Field Effects 73

Summary 77

PART II SEMICONDUCTOR DEVICES

Chapter 3 p-n Junction 82

3.1 Thermal Equilibrium Condition 83

3.2 Depletion Region 87

3.3 Depletion Capacitance 95

3.4 Current-Voltage Characteristics 99

3.5 Charge Storage and Transient Behavior 108

3.6 Junction Breakdown 111

3.7 Heterojunction 117

Summary 120

Chapter 4 Bipolar Transistors and Related Devices 123

4.1 Transistor Action 124

4.2 Static Characteristics of Bipolar Transistors 129

4.3 Frequency Response and Switching of Bipolar Transistors 137

4.4 Nonideal Effects 142

4.5 Heterojunction Bipolar Transistors 146

4.6 Thyristors and Related Power Devices 149

Summary 155

Chapter 5 MOS Capacitor and MOSFET 160

5.1 Ideal MOS Capacitor 160

5.2 SiO2-Si MOS Capacitor 169

5.3 Carrier Transport in MOS Capacitors 174

5.4 Charge-Coupled Devices 177

5.5 MOSFET Fundamentals 180

Summary 192

Chapter 6 Advanced MOSFET and Related Devices 195

6.1 MOSFET Scaling 195

6.2 CMOS and BiCMOS 205

6.3 MOSFET on Insulator 210

6.4 MOS Memory Structures 214

6.5 Power MOSFET 223

Summary 224

Chapter 7 MESFET and Related Devices 228

7.1 Metal-Semiconductor Contacts 229

7.2 MESFET 240

7.3 MODFET 249

Summary 255

Chapter 8 Microwave Diodes; Quantum-Effect and Hot-Electron Devices 258

8.1 Microwave Frequency Bands 259

8.2 Tunnel Diode 260

8.3 IMPATT Diode 260

8.4 Transferred-Electron Devices 265

8.5 Quantum-Effect Devices 269

8.6 Hot-Electron Devices 274

Summary 277

Chapter 9 Light Emitting Diodes and Lasers 280

9.1 Radiative Transitions and Optical Absorption 280

9.2 Light-Emitting Diodes 286

9.3 Various Light-Emitting Diodes 291

9.4 Semiconductor Lasers 302

Summary 319

Chapter 10 Photodetectors and Solar Cells 323

10.1 Photodetectors 323

10.2 Solar Cells 336

10.3 Silicon and Compound-Semiconductor Solar Cells 343

10.4 Third-Generation Solar Cells 348

10.5 Optical Concentration 352

Summary 352

PART III SEMICONDUCTOR TECHNOLOGY

Chapter 11 Crystal Growth and Epitaxy 357

11.1 Silicon Crystal Growth from the Melt 357

11.2 Silicon Float-Zone Proces 363

11.3 GaAs Grystal-Growth Techniques 367

11.4 Material Characterization 370

11.5 Epitaxial-Growth Techniques 377

11.6 Structures and Defects in Epitaxial Layers 384

Summary 388

Chapter 12 Film Formation 392

12.1 Thermal Oxidation 392

12.2 Chemical Vapor Deposition of Dielectrics 400

12.3 Chemical Vapor Deposition of Polysilicon 409

12.4 Atom Layer Deposition 412

12.5 Metallization 414

Summary 425

Chapter 13 Lithography and Etching 428

13.1 Optical Lithography 428

13.2 Next-Generation Lithographic Methods 441

13.3 Wet Chemical Etching 447

13.4 Dry Etching 450

Summary 462

Chapter 14 Impurity Doping 466

14.1 Basic Diffusion Process 467

14.2 Extrinsic Diffusion 476

14.3 Diffusion-Related Processes 480

14.4 Range of Implanted Ions 483

14.5 Implant Damage and Annealing 490

14.6 Implantation-Related Processes 495

Summary 501

Chapter 15 Integrated Devices 505

15.1 Passive Components 507

15.2 Bipolar Technology 511

15.3 MOSFET Technology 516

15.4 MESFET Technology 529

15.5 Challenges for Nanoelectronics 532

Summary 537

APPENDIX A List of Symbols 541

APPENDIX B International Systems of Units (SI Units) 543

APPENDIX C Unit Prefixes 544

APPENDIX D Greek Alphabet 545

APPENDIX E Physical Constants 546

APPENDIX F Properties of Important Element and Binary Compound Semiconductors at 300 K 547

APPENDIX G Properties of Si and GaAs at 300 K 548

APPENDIX H Derivation of the Density of States in a Semiconductor 549

APPENDIX I Derivation of Recombination Rate for Indirect Recombination 553

APPENDIX J Calculation of the Transmission Coefficient for a Symmetric Resonant-Tunneling Diode 555

APPENDIX K Basic Kinetic Theory of Gases 557

APPENDIX L Answers to Selected Problems 559

Photo Credits 563

Index 565



Please wait while the item is added to your cart...