CART

(0) items

Single Variable Calculus : Early Transcendentals,9780321664143
This item qualifies for
FREE SHIPPING!

FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Single Variable Calculus : Early Transcendentals

by ;
Edition:
1st
ISBN13:

9780321664143

ISBN10:
0321664140
Format:
Paperback
Pub. Date:
1/5/2010
Publisher(s):
Pearson
List Price: $122.67

Buy Used Textbook

(Recommended)
Usually Ships in 2-3 Business Days
$85.87

Buy New Textbook

Currently Available, Usually Ships in 24-48 Hours
$119.60

Rent Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

More New and Used
from Private Sellers
Starting at $4.24

Questions About This Book?

What version or edition is this?
This is the 1st edition with a publication date of 1/5/2010.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Used copy of this book is not guaranteed to inclue any supplemental materials. Typically, only the book itself is included.

Related Products


  • Single Variable Calculus Early Transcendentals Plus NEW MyMathLab with Pearson eText -- Access Card Package
    Single Variable Calculus Early Transcendentals Plus NEW MyMathLab with Pearson eText -- Access Card Package
  • Student Solutions Manual, Single Variable for Calculus Early Transcendentals
    Student Solutions Manual, Single Variable for Calculus Early Transcendentals




Summary

Drawing on their decades of teaching experience, William Briggs and Lyle Cochran have created a calculus text that carries the teacherrs"s voice beyond the classroom. That voice-evident in the narrative, the figures, and the questions interspersed in the narrative-is a master teacher leading readers to deeper levels of understanding. The authors appeal to readersrs" geometric intuition to introduce fundamental concepts and lay the foundation for the more rigorous development that follows. Comprehensive exercise sets have received praise for their creativity, quality, and scope. Functions; Limits; Derivatives; Applications of the Derivative; Integration; Applications of Integration; Integration Techniques; Sequences and Infinite Series; Power Series; Parametric and Polar Curves; Vectors and Vector-Valued Functions; Functions of Several Variables; Multiple Integration; Vector Calculus. For all readers interested in single variable and multivariable calculus for mathematics, engineering, and science.

Author Biography

William Briggs has been on the mathematics faculty at the University of Colorado at Denver for twenty-three years. He received his BA in mathematics from the University of Colorado and his MS and PhD in applied mathematics from Harvard University. He teaches undergraduate and graduate courses throughout the mathematics curriculum with a special interest in mathematical modeling and differential equations as it applies to problems in the biosciences. He has written a quantitative reasoning textbook, Using and Understanding Mathematics; an undergraduate problem solving book, Ants, Bikes, and Clocks; and two tutorial monographs, The Multigrid Tutorial and The DFT: An Owner’s Manual for the Discrete Fourier Transform. He is the Society for Industrial and Applied Mathematics (SIAM) Vice President for Education, a University of Colorado President’s Teaching Scholar, a recipient of the Outstanding Teacher Award of the Rocky Mountain Section of the Mathematical Association of America (MAA), and the recipient of a Fulbright Fellowship to Ireland.

 

Lyle Cochran is a professor of mathematics at Whitworth University in Spokane, Washington. He holds BS degrees in mathematics and mathematics education from Oregon State University and a MS and PhD in mathematics from Washington State University. He has taught a wide variety of undergraduate mathematics courses at Washington State University, Fresno Pacific University, and, since 1995, at Whitworth University. His expertise is in mathematical analysis, and he has a special interest in the integration of technology and mathematics education. He has written technology materials for leading calculus and linear algebra textbooks including the Instructor’s Mathematica Manual for Linear Algebra and Its Applications by David C. Lay and the Mathematica Technology Resource Manual for Thomas’ Calculus. He is a member of the MAA and a former chair of the Department of Mathematics and Computer Science at Whitworth University.

Table of Contents

Chapter 1: Functions

1.1 Review of Functions

1.2 Representing Functions

1.3 Inverse, Exponential, and Logarithm Functions

1.4 Trigonometric Functions and Their Inverses

 

Chapter 2: Limits

2.1 The Idea of Limits

2.2 Definitions of Limits

2.3 Techniques for Computing Limits

2.4 Infinite Limits

2.5 Limits at Infinity

2.6 Continuity

2.7 Precise Definitions of Limits

 

Chapter 3: Derivatives

3.1 Introducing the Derivative

3.2 Rules of Differentiation

3.3 The Product and Quotient Rules

3.4 Derivatives of Trigonometric Functions

3.5 Derivatives as Rates of Change

3.6 The Chain Rule

3.7 Implicit Differentiation

3.8 Derivatives of Logarithmic and Exponential Functions

3.9 Derivatives of Inverse Trigonometric Functions

3.10 Related Rates

 

Chapter 4: Applications of the Derivative

4.1 Maxima and Minima

4.2 What Derivatives Tell Us

4.3 Graphing Functions

4.4 Optimization Problems

4.5 Linear Approximation and Differentials

4.6 Mean Value Theorem

4.7 L’Hôpital’s Rule

4.8 Antiderivatives

 

Chapter 5: Integration

5.1 Approximating Areas under Curves

5.2 Definite Integrals

5.3 Fundamental Theorem of Calculus

5.4 Working with Integrals

5.5 Substitution Rule

 

Chapter 6: Applications of Integration

6.1 Velocity and Net Change

6.2 Regions between Curves

6.3 Volume by Slicing

6.4 Volume by Shells

6.5 Length of Curves

6.6 Physical Applications

6.7 Logarithmic and exponential functions revisited

6.8 Exponential models

 

Chapter 7: Integration Techniques

7.1 Integration by Parts

7.2 Trigonometric Integrals

7.3 Trigonometric Substitution

7.4 Partial Fractions

7.5 Other Integration Strategies

7.6 Numerical Integration

7.7 Improper Integrals

7.8 Introduction to Differential Equations

 

Chapter 8: Sequences and Infinite Series

8.1 An Overview

8.2 Sequences

8.3 Infinite Series

8.4 The Divergence and Integral Tests

8.5 The Ratio and Comparison Tests

8.6 Alternating Series

 

Chapter 9: Power Series

9.1 Approximating Functions with Polynomials

9.2 Power Series

9.3 Taylor Series

9.4 Working with Taylor Series

 

Chapter 10: Parametric and Polar Curves

10.1 Parametric Equations

10.2 Polar Coordinates

10.3 Calculus in Polar Coordinates

10.4 Conic Sections



Please wait while the item is added to your cart...