CART

(0) items

Single Variable Calculus Plus NEW MyMathLab with Pearson eText -- Access Card Package,9780321965141
This item qualifies for
FREE SHIPPING!

FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Single Variable Calculus Plus NEW MyMathLab with Pearson eText -- Access Card Package

by ; ;
Edition:
2nd
ISBN13:

9780321965141

ISBN10:
0321965140
Format:
Package
Pub. Date:
3/20/2014
Publisher(s):
Pearson
List Price: $136.00

Buy New Textbook

This item is temporarily unavailable from the publisher, but is expected in soon. Place your order now and we will ship it as soon as it arrives.
N9780321965141
$130.20

Rent Textbook

We're Sorry
Sold Out

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

More New and Used
from Private Sellers
Starting at $136.17
See Prices

Questions About This Book?

What version or edition is this?
This is the 2nd edition with a publication date of 3/20/2014.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.

Related Products


  • Single Variable Calculus
    Single Variable Calculus
  • Single Variable Calculus
    Single Variable Calculus
  • Single Variable Calculus Plus MyMathLab -- Access Card Package
    Single Variable Calculus Plus MyMathLab -- Access Card Package




Summary

This much anticipated second edition of the most successful new calculus text published in the last two decades retains the best of the first edition while introducing important advances and refinements. Authors Briggs, Cochran, and Gillett build from a foundation of meticulously crafted exercise sets, then draw students into the narrative through writing that reflects the voice of the instructor, examples that are stepped out and thoughtfully annotated, and figures that are designed to teach rather than simply supplement the narrative. The authors appeal to students’ geometric intuition to introduce fundamental concepts, laying a foundation for the development that follows.

 

0321965140 / 9780321965141 Single Variable Calculus Plus NEW MyMathLab with Pearson eText -- Access Card Package

Package consists of:   

0321431308 / 9780321431301 MyMathLab -- Glue-in Access Card

0321654064 / 9780321654069 MyMathLab Inside Star Sticker

0321954890 / 9780321954893 Single Variable Calculus, 2/e

 

Author Biography

William Briggs has been on the mathematics faculty at the University of Colorado at Denver for twenty-three years. He received his BA in mathematics from the University of Colorado and his MS and PhD in applied mathematics from Harvard University. He teaches undergraduate and graduate courses throughout the mathematics curriculum with a special interest in mathematical modeling and differential equations as it applies to problems in the biosciences. He has written a quantitative reasoning textbook, Using and Understanding Mathematics; an undergraduate problem solving book, Ants, Bikes, and Clocks; and two tutorial monographs, The Multigrid Tutorial and The DFT: An Owner’s Manual for the Discrete Fourier Transform. He is the Society for Industrial and Applied Mathematics (SIAM) Vice President for Education, a University of Colorado President’s Teaching Scholar, a recipient of the Outstanding Teacher Award of the Rocky Mountain Section of the Mathematical Association of America (MAA), and the recipient of a Fulbright Fellowship to Ireland.

 

Lyle Cochran is a professor of mathematics at Whitworth University in Spokane, Washington. He holds BS degrees in mathematics and mathematics education from Oregon State University and a MS and PhD in mathematics from Washington State University. He has taught a wide variety of undergraduate mathematics courses at Washington State University, Fresno Pacific University, and, since 1995, at Whitworth University. His expertise is in mathematical analysis, and he has a special interest in the integration of technology and mathematics education. He has written technology materials for leading calculus and linear algebra textbooks including the Instructor’s Mathematica Manual for Linear Algebra and Its Applications by David C. Lay and the Mathematica Technology Resource Manual for Thomas’ Calculus. He is a member of the MAA and a former chair of the Department of Mathematics and Computer Science at Whitworth University.

 

Bernard Gillett is a Senior Instructor at the University of Colorado at Boulder; his primary focus is undergraduate education. He has taught a wide variety of mathematics courses over a twenty-year career, receiving five teaching awards in that time. Bernard authored a software package for algebra, trigonometry, and precalculus; the Student’s Guide and Solutions Manual and the Instructor’s Guide and Solutions Manual for Using and Understanding Mathematics by Briggs and Bennett; and the Instructor’s Resource Guide and Test Bank for Calculus and Calculus: Early Transcendentals by Briggs, Cochran, and Gillett. Bernard is also an avid rock climber and has published four climbing guides for the mountains in and surrounding Rocky Mountain National Park.

Table of Contents

1. Functions

1.1 Review of functions

1.2 Representing functions

1.3 Trigonometric functions

1.4 Trigonometric functions

 

2. Limits

2.1 The idea of limits

2.2 Definitions of limits

2.3 Techniques for computing limits

2.4 Infinite limits

2.5 Limits at infinity

2.6 Continuity

2.7 Precise definitions of limits

 

3. Derivatives

3.1 Introducing the derivative

3.2 Working with derivatives

3.3 Rules of differentiation

3.4 The product and quotient rules

3.5 Derivatives of trigonometric functions

3.6 Derivatives as rates of change

3.7 The Chain Rule

3.8 Implicit differentiation

3.9 Related rates

 

4. Applications of the Derivative

4.1 Maxima and minima

4.2 What derivatives tell us

4.3 Graphing functions

4.4 Optimization problems

4.5 Linear approximation and differentials

4.6 Mean Value Theorem

4.7 L’Hôpital’s Rule

4.8 Newton’s Method

4.9 Antiderivatives

 

5. Integration

5.1 Approximating areas under curves

5.2 Definite integrals

5.3 Fundamental Theorem of Calculus

5.4 Working with integrals

5.5 Substitution rule

 

6. Applications of Integration

6.1 Velocity and net change

6.2 Regions between curves

6.3 Volume by slicing

6.4 Volume by shells

6.5 Length of curves

6.6 Surface area

6.7 Physical applications

 

7. Logarithmic and Exponential Functions

7.1 Inverse functions

7.2 The natural logarithmic and exponential functions

7.3 Logarithmic and exponential functions with other bases

7.4 Exponential models

7.5 Inverse trigonometric functions

7.6 L’ Hôpital’s Rule and growth rates of functions

7.7 Hyperbolic functions

 

8. Integration Techniques

8.1 Basic approaches

8.2 Integration by parts

8.3 Trigonometric integrals

8.4 Trigonometric substitutions

8.5 Partial fractions

8.6 Other integration strategies

8.7 Numerical integration

8.8 Improper integrals

8.9 Introduction to differential equations

 

9. Sequences and Infinite Series

9.1 An overview

9.2 Sequences

9.3 Infinite series

9.4 The Divergence and Integral Tests

9.5 The Ratio, Root, and Comparison Tests

9.6 Alternating series

 

10. Power Series

10.1 Approximating functions with polynomials

10.2 Properties of Power series

10.3 Taylor series

10.4 Working with Taylor series

 

11. Parametric and Polar Curves

11.1 Parametric equations

11.2 Polar coordinates

11.3 Calculus in polar coordinates

11.4 Conic sections



Please wait while the item is added to your cart...