CART

(0) items

Statics and Mechanics of Materials Plus MasteringEngineering with Pearson eText -- Access Card Package,9780133455410
This item qualifies for
FREE SHIPPING!
FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Statics and Mechanics of Materials Plus MasteringEngineering with Pearson eText -- Access Card Package

by
Edition:
4th
ISBN13:

9780133455410

ISBN10:
0133455416
Format:
Package
Pub. Date:
7/23/2013
Publisher(s):
Prentice Hall

Questions About This Book?

Why should I rent this book?
Renting is easy, fast, and cheap! Renting from eCampus.com can save you hundreds of dollars compared to the cost of new or used books each semester. At the end of the semester, simply ship the book back to us with a free UPS shipping label! No need to worry about selling it back.
How do rental returns work?
Returning books is as easy as possible. As your rental due date approaches, we will email you several courtesy reminders. When you are ready to return, you can print a free UPS shipping label from our website at any time. Then, just return the book to your UPS driver or any staffed UPS location. You can even use the same box we shipped it in!
What version or edition is this?
This is the 4th edition with a publication date of 7/23/2013.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. You may receive a brand new copy, but typically, only the book itself.

Related Products


  • Statics and Mechanics of Materials
    Statics and Mechanics of Materials
  • Statics and Mechanics of Materials
    Statics and Mechanics of Materials
  • Statics and Mechanics of Materials
    Statics and Mechanics of Materials





Summary

ALERT: Before you purchase, check with your instructor or review your course syllabus to ensure that you select the correct ISBN. Several versions of Pearson's MyLab & Mastering products exist for each title, including customized versions for individual schools, and registrations are not transferable. In addition, you may need a CourseID, provided by your instructor, to register for and use Pearson's MyLab & Mastering products.

 

Packages

Access codes for Pearson's MyLab & Mastering products may not be included when purchasing or renting from companies other than Pearson; check with the seller before completing your purchase.

 

Used or rental books

If you rent or purchase a used book with an access code, the access code may have been redeemed previously and you may have to purchase a new access code.

 

Access codes

Access codes that are purchased from sellers other than Pearson carry a higher risk of being either the wrong ISBN or a previously redeemed code. Check with the seller prior to purchase.

 

--
For introductory combined Statics and Mechanics of Materials courses found in ME, CE, AE, and Engineering Mechanics departments.

  

Statics and Mechanics of Materials provides a comprehensive and well-illustrated introduction to the theory and application of statics and mechanics of materials. The text presents a commitment to the development of student problem-solving skills and features many pedagogical aids unique to Hibbeler texts.

 

MasteringEngineering for Statics and Mechanics of Materials is a total learning package. This innovative online program emulates the instructor’s office—hour environment, guiding students through engineering concepts from Statics and Mechanics of Materials with self-paced individualized coaching.

  

Teaching and Learning Experience

This program will provide a better teaching and learning experience–for you and your students. It provides:

  • Individualized Coaching: MasteringEngineering emulates the instructor’s office-hour environment using self-paced individualized coaching.
  • Problem Solving: A large variety of problem types stress practical, realistic situations encountered in professional practice.
  • Visualization: The photorealistic art program is designed to help students visualize difficult concepts.
  • Review and Student Support: A thorough end of chapter review provides students with a concise reviewing tool.
  • Accuracy: The accuracy of the text and problem solutions has been thoroughly checked by four other parties.


Note: MasteringEngineering is not a self-paced technology and should only be purchased when required by an instructor.

 

0133455416 / 9780133455410 Statics and Mechanics of Materials Plus MasteringEngineering with Pearson eText -- Access Card Package

Package consists of:

  • 0133451607 / 9780133451603 Statics and Mechanics of Materials
  • 0133454681 / 9780133454680 MasteringEngineering with Pearson eText -- Standalone Access Card -- for Statics and Mechanics of Materials

Author Biography

R.C. Hibbeler graduated from the University of Illinois at Urbana with a BS in Civil Engineering (major in Structures) and an MS in Nuclear Engineering. He obtained his PhD in Theoretical and Applied Mechanics from Northwestern University.

Hibbeler’s professional experience includes postdoctoral work in reactor safety and analysis at Argonne National Laboratory, and structural work at Chicago Bridge and Iron, as well as Sargent and Lundy in Tucson. He has practiced engineering in Ohio, New York, and Louisiana.

Hibbeler currently teaches at the University of Louisiana, Lafayette. In the past he has taught at the University of Illinois at Urbana, Youngstown State University, Illinois Institute of Technology, and Union College.

Table of Contents

Statics

1 General Principles 3
Chapter Objectives 3
1.1 Mechanics 3
1.2 Fundamental Concepts 4
1.3 Units of Measurement 7
1.4 The International System of Units 9
1.5 Numerical Calculations 10
1.6 General Procedure for Analysis 12

2 Force Vectors 17
Chapter Objectives 17
2.1 Scalars and Vectors 17
2.2 Vector Operations 18
2.3 Vector Addition of Forces 20
2.4 Addition of a System of Coplanar Forces 30
2.5 Cartesian Vectors 38
2.6 Addition of Cartesian Vectors 41
2.7 Position Vectors 50
2.8 Force Vector Directed Along a Line 53
2.9 Dot Product 60

3 Force System Resultants 75
Chapter Objectives 75
3.1 Moment of a Force–Scalar Formulation 75
3.2 Cross Product 79
3.3 Moment of a Force–Vector Formulation 82
3.4 Principle of Moments 86
3.5 Moment of a Force about a Specified Axis 96
3.6 Moment of a Couple 103
3.7 Simplification of a Force and Couple System 112
3.8 Further Simplification of a Force and Couple System 122

4 Equilibrium of a Rigid Body 139
Chapter Objectives 139
4.1 Conditions for Rigid-Body Equilibrium 139
4.2 Free-Body Diagrams 141
4.3 Equations of Equilibrium 151
4.4 Two- and Three-Force Members 157
4.5 Free-Body Diagrams 167
4.6 Equations of Equilibrium 172
4.7 Characteristics of Dry Friction 180
4.8 Problems Involving Dry Friction 184
4.9 Frictional Forces on Flat Belts 197
4.10 Frictional Forces on Screws 200

5 Structural Analysis 215
Chapter Objectives 215
5.1 Simple Trusses 215
5.2 The Method of Joints 218
5.3 Zero-Force Members 224
5.4 The Method of Sections 231
5.5 Frames and Machines 240

6 Center of Gravity, Centroid, and Moment of Inertia 261
Chapter Objectives 261
6.1 Center of Gravity, Center of Mass, and the Centroid of a Body 261
6.2 Composite Bodies 273
6.3 Resultant of a Distributed Loading 281
6.4 Moments of Inertia for Areas 290
6.5 Parallel-Axis Theorem for an Area 291
6.6 Moments of Inertia for Composite Areas 298

7 Stress and Strain 309
Chapter Objectives 309
7.1 Introduction 309
7.2 Internal Resultant Loadings 310
7.3 Stress 322
7.4 Average Normal Stress in an Axially Loaded Bar 324
7.5 Average Shear Stress 331
7.6 Allowable Stress 342
7.7 Design of Simple Connections 343
7.8 Deformation 355
7.9 Strain 356

Mechanics of Materials

8 Mechanical Properties of Materials 373
Chapter Objectives 373
8.1 The Tension and Compression Test 373
8.2 The Stress—Strain Diagram 375
8.3 Stress—Strain Behavior of Ductile and Brittle Materials 379
8.4 Hooke’s Law 382
8.5 Strain Energy 384
8.6 Poisson’s Ratio 392
8.7 The Shear Stress—Strain Diagram 394

9 Axial Load 405
Chapter Objectives 405
9.1 Saint-Venant’s Principle 405
9.2 Elastic Deformation of an Axially Loaded Member 408
9.3 Principle of Superposition 421
9.4 Statically Indeterminate Axially Loaded Member 422
9.5 The Force Method of Analysis for Axially Loaded Members 428
9.6 Thermal Stress 434
9.7 Stress Concentrations 440

10 Torsion 451
Chapter Objectives 451
10.1 Torsional Deformation of a Circular Shaft 451
10.2 The Torsion Formula 454
10.3 Power Transmission 461
10.4 Angle of Twist 468
10.5 Statically Indeterminate Torque-Loaded Members 481
*10.6 Solid Noncircular Shafts 488
10.7 Stress Concentration 492

11 Bending 501
Chapter Objectives 501
11.1 Shear and Moment Diagrams 501
11.2 Graphical Method for Constructing Shear and Moment Diagrams 508
11.3 Bending Deformation of a Straight Member 525
11.4 The Flexure Formula 529
11.5 Unsymmetric Bending 542
11.6 Stress Concentrations 550

12 Transverse Shear 559
Chapter Objectives 559
12.1 Shear in Straight Members 559
12.2 The Shear Formula 561
12.3 Shear Flow in Built-Up Members 578

13 Combined Loadings 591
Chapter Objectives 591
13.1 Thin-Walled Pressure Vessels 591
13.2 State of Stress Caused by Combined
Loadings 598

14 Stress and Strain Transformation 619
Chapter Objectives 619
14.1 Plane-Stress Transformation 619
14.2 General Equations of Plane-Stress
Transformation 624
14.3 Principal Stresses and Maximum In-Plane
Shear Stress 627
14.4 Mohr’s Circle–Plane Stress 639
14.5 Absolute Maximum Shear Stress 650
14.6 Plane Strain 657
14.7 General Equations of Plane-Strain Transformation 658
*14.8 Mohr’s Circle–Plane Strain 666
14.9 Strain Rosettes 674
14.10 Material-Property Relationships 676

15 Design of Beams and Shafts 693
Chapter Objectives 693
15.1 Basis for Beam Design 693
15.2 Prismatic Beam Design 696
*15.3 Fully Stressed Beams 710

16 Deflection of Beams and Shafts 717
Chapter Objectives 717
16.1 The Elastic Curve 717
16.2 Slope and Displacement by Integration 721
*16.3 Discontinuity Functions 735
16.4 Method of Superposition 745
16.5 Statically Indeterminate Beams and Shafts—Method of Superposition 752

17 Buckling of Columns 769
Chapter Objectives 769
17.1 Critical Load 769
17.2 Ideal Column with Pin Supports 772
17.3 Columns Having Various Types of Supports 778
*17.4 The Secant Formula 788
*17.5 Inelastic Buckling 794

Appendices
A. Mathematical Review and Expressions 804
B. Geometric Properties of An Area and Volume 808
C. Geometric Properties of Wide-Flange Sections 810
D. Slopes and Deflections of Beams 814
Fundamental Problems Partial Solutions and Answers 816
Answers to Selected Problems 844
Index 871



Please wait while the item is added to your cart...