(0) items

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.
Structure for Architects : A Primer,9780470633762
This item qualifies for

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Structure for Architects : A Primer

by ;


Pub. Date:
List Price: $80.00

Rent Textbook


Buy New Textbook

Usually Ships in 3-4 Business Days



Used Textbook

We're Sorry
Sold Out

More New and Used
from Private Sellers
Starting at $60.46

Questions About This Book?

Why should I rent this book?
Renting is easy, fast, and cheap! Renting from can save you hundreds of dollars compared to the cost of new or used books each semester. At the end of the semester, simply ship the book back to us with a free UPS shipping label! No need to worry about selling it back.
How do rental returns work?
Returning books is as easy as possible. As your rental due date approaches, we will email you several courtesy reminders. When you are ready to return, you can print a free UPS shipping label from our website at any time. Then, just return the book to your UPS driver or any staffed UPS location. You can even use the same box we shipped it in!
What version or edition is this?
This is the 1st edition with a publication date of 4/10/2012.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. You may receive a brand new copy, but typically, only the book itself.
  • The eBook copy of this book is not guaranteed to include any supplemental materials. Typically only the book itself is included.


Structure for Architects explains the fundamental structural concepts required for architects and architectural technologists using a highly illustrated approach and real-world examples. With an intuitive, easy-to-read and graphically-friendly format, Structure for Architects is meant for the visual thinker and those that think conceptually. The intuitive approach demystifies structural principles by showing them in the context of everyday situations. Eschewing complicated mathematics, just enough technical information is presented so the reader will not be intimidated by detailed engineering.

Author Biography

Ramsey Dabby is Chief Architect for the New York City Fire Department and Adjunct Assistant Professor of Architecture at New York City College of Technology (CUNY). He is a registered architect in New York and New Jersey with forty years of architectural experience in the private and public sectors.

Ashwani Bedi is a Structural Engineer with the New York City Department of Design and Construction and Adjunct Assistant Professor of Structures at both New York City College of Technology (CUNY) and New York University. In addition to being a professional engineer in New York, New Jersey, and Maryland, he is also a Chartered Engineer in India. He has more than twenty years of varied engineering experience with acclaimed national and international consulting firms in the fields of structural design, CAD, and computer-aided analysis.

Table of Contents


CHAPTER 1 Architects, Engineers, and Design 1

CHAPTER 2 Stability and Strength 5

CHAPTER 3 Loads 7

3.1 Gravity Loads 7

3.2 Lateral Loads 7

3.3 Dynamic Loads 10

3.4 Impact Loads 12

3.5 Load Paths 12

CHAPTER 4 States of Stress 17

4.1 Tension 17

4.2 Compression 17

4.3 Shear 18

4.4 Torsion 19

4.5 Bending 19

CHAPTER 5 Forces, Movement, Levers, and Moment 23

5.1 Applied and Reactive Forces 23

5.2 Translational Movement 23

5.3 Rotational Movement 24

5.4 Levers 24

5.5 Moment 25

CHAPTER 6 Stability and Equilibrium 27

6.1 Introduction 27

6.2 Translational Equilibrium 27

6.3 Rotational Equilibrium 28

6.4 Sign Conventions 29

6.5 The Equilibrium Equations 29

6.6 Free-Body Diagrams and Familiar Examples of Equilibrium 30

6.7 Introduction to Bending in Beams 39

CHAPTER 7 Working with Forces 41

7.1 Forces, Vectors, and Lines of Action 41

7.2 Combining and Resolving Concurrent Forces 44

7.3 Familiar Examples of Concurrent Forces 49

CHAPTER 8 Supports, Reactions, and Restraint of Movement 55

8.1 Roller and Frictionless-Surface Supports 55

8.2 Pinned Supports 56

8.3 Fixed Supports 58

8.4 Hanger Supports 60

8.5 Familiar Examples of Support Conditions 61

8.6 Stable or Unstable? 74

CHAPTER 9 Load Distribution 79

9.1 Point Loads 79

9.2 Distributed Loads 80

9.3 Equivalent Point Loads 81

9.4 Uniformly Distributed Loads 82

9.5 Non-Uniformly Distributed Loads 85

CHAPTER 10 Introduction to Beams 87

10.1 Beam Types 87

10.2 Predicting Deformation, Deflection, and Beam Behavior 88

10.3 Statically Determinate and Statically Indeterminate Beams 90

10.4 Other Considerations for Beams 94

CHAPTER 11 Framing Systems and Load Tributary Areas 99

11.1 One-Way Systems 99

11.2 Two-Way Slab and Beam Systems 103

11.3 Two-Way Slab/Two-Way Joist Systems 106

CHAPTER 12 Shear and Moment Diagrams for Beams 109

12.1 Sign Conventions 109

12.2 Typical Shear and Moment Diagrams 110

12.3 Creating Shear and Moment Diagrams 114

12.4 Comparing V and M for Uniformly Distributed Versus Concentrated Loading 120

12.5 Summary of Deformation, Shear, and Moment Relationships 123

CHAPTER 13 Stress, Strain, and Properties of Materials 125

13.1 Stress 125

13.2 Strain 126

13.3 Stress versus Strain 127

13.4 Properties of Materials 129

13.5 Stress Distribution Diagrams 130

CHAPTER 14 Introduction to Columns 131

14.1 Columns, Compression, and Bending 131

14.2 Column Loading 131

14.3 Column Compression 134

14.4 Column Bending 135

14.5 Leonhard Euler and Column Buckling 139

CHAPTER 15 Frames, Rigidity, and Lateral Resistance Systems 141

15.1 Triangular Frames 141

15.2 Rectangular Frames 141

15.3 Making Rectangular Frames Rigid 142

15.4 Lateral Resistance Systems 145

CHAPTER 16 Introduction to Trusses 151

16.1 Introduction 151

16.2 Trusses as Beams 152

16.3 Types of Trusses 154

16.4 Design Considerations 155

16.5 Truss Joints 157

16.6 Truss Loading 158

16.7 Truss Analysis 159

CHAPTER 17 Structural Walls 171

17.1 Loads and Deformational Stresses 172

17.2 Stresses and Wall Construction 173

17.3 Retaining Walls 175

CHAPTER 18 Soils and Rock 183

18.1 The Earth’s Interior 183

18.2 The Earth’s Crust 183

18.3 Natural Soils 186

18.4 Groundwater 186

18.5 Engineered Fill 187

18.6 Foundation Settlement 187

18.7 Soil-Bearing Capacity and Subsurface Conditions 187

CHAPTER 19 Foundations 189

19.1 Shallow Foundations 189

19.2 Deep Foundations 197

CHAPTER 20 Summing Up 199

APPENDIX 1 Structural Forms 201

APPENDIX 2 Structural Materials—Steel 211

A2.1 Composition and Manufacture 211

A2.2 Characteristics and Properties 211

A2.3 The American Institute of Steel Construction 212

A2.4 Grades of Structural Steel 212

A2.5 Shapes and Forms 212

A2.6 Joining Steel 214

A2.7 Decking 223

A2.8 The Design/Fabrication/Erection Process 224

A2.9 Related Terms 224

APPENDIX 3 Structural Materials—Reinforced Concrete 229

A3.1 Composition and Manufacture 229

A3.2 Curing 230

A3.3 Characteristics and Properties 231

A3.4 Related Terms 231

APPENDIX 4 Structural Materials—Wood 233

A4.1 Source and Manufacture 233

A4.2 Products 234

A4.3 Characteristics and Properties 236

A4.4 Structural Considerations 236

A4.5 Related Terms 237

APPENDIX 5 Properties of Sections 239

A5.1 Center of Gravity and Centroids 239

A5.2 Moment of Inertia 242

A5.3 Section Modulus 247

A5.4 Radius of Gyration 250

APPENDIX 6 Basic Trigonometry 257

A6.1 Basic Trigonometric Functions of a Right Triangle 257

A6.2 Basic Trigonometric Values of Frequently Used Angles 257

A6.3 Proportions of Special Right Triangles 258

A6.4 The Pythagorean Theorem 258


Please wait while the item is added to your cart...