CART

(0) items

Survival of the Sickest : The Surprising Connections Between Disease and Longevity,9780060889661

Survival of the Sickest : The Surprising Connections Between Disease and Longevity

by
Edition:
1st
ISBN13:

9780060889661

ISBN10:
0060889667
Format:
Paperback
Pub. Date:
3/16/2010
Publisher(s):
HarperCollins Publications
List Price: $15.99

Rent Book

(Recommended)
 
Term
Due
Price
$5.01

Buy Used Book

In Stock Usually Ships in 24 Hours.
U9780060889661
$5.11

Buy New Book

In Stock Usually Ships in 24 Hours
N9780060889661
$11.93

eBook

We're Sorry
Not Available

More New and Used
from Private Sellers
Starting at $4.52
See Prices

Questions About This Book?

Why should I rent this book?
Renting is easy, fast, and cheap! Renting from eCampus.com can save you hundreds of dollars compared to the cost of new or used books each semester. At the end of the semester, simply ship the book back to us with a free UPS shipping label! No need to worry about selling it back.
How do rental returns work?
Returning books is as easy as possible. As your rental due date approaches, we will email you several courtesy reminders. When you are ready to return, you can print a free UPS shipping label from our website at any time. Then, just return the book to your UPS driver or any staffed UPS location. You can even use the same box we shipped it in!
What version or edition is this?
This is the 1st edition with a publication date of 3/16/2010.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Used copy of this book is not guaranteed to inclue any supplemental materials. Typically, only the book itself is included.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. You may receive a brand new copy, but typically, only the book itself.

Summary

Joining the ranks of modern myth busters, Dr. Sharon Moalem turns our current understanding of illness on its head and challenges us to fundamentally change the way we think about our bodies, our health, and our relationship to just about every other living thing on earth. Through a fresh and engaging examination of our evolutionary history, Dr. Moalem reveals how many of the conditions that are diseases today actually gave our ancestors a leg up in the survival sweepstakes. But Survival of the Sickest doesn't stop there. It goes on to demonstrate just how little modern medicine really understands about human health, and offers a new way of thinking that can help all of us live longer, healthier lives.

Table of Contents

Introductionp. ix
Ironing It Outp. 1
A Spoonful of Sugar Helps the Temperature Go Downp. 23
The Cholesterol Also Risesp. 49
Hey, Bud, Can You Do Me a Fava?p. 71
Of Microbes and Menp. 95
Jump into the Gene Poolp. 125
Methyl Madness: Road to the Final Phenotypep. 155
That's Life: Why You and Your iPod Must Diep. 183
Conclusionp. 207
Acknowledgmentsp. 209
Notesp. 211
Indexp. 255
Table of Contents provided by Ingram. All Rights Reserved.

Excerpts

Survival of the Sickest
The Surprising Connections Between Disease and Longevity

Chapter One

Ironing it Out

Aran Gordon is a born competitor. He's a top financial executive, a competitive swimmer since he was six years old, and a natural long-distance runner. A little more than a dozen years after he ran his first marathon in 1984 he set his sights on the Mount Everest of marathons—the Marathon des Sables, a 150-mile race across the Sahara Desert, all brutal heat and endless sand that test endurance runners like nothing else.

As he began to train he experienced something he'd never really had to deal with before—physical difficulty. He was tired all the time. His joints hurt. His heart seemed to skip a funny beat. He told his running partner he wasn't sure he could go on with training, with running at all. And he went to the doctor.

Actually, he went to doctors. Doctor after doctor—they couldn't account for his symptoms, or they drew the wrong conclusion. When his illness left him depressed, they told him it was stress and recommended he talk to a therapist. When blood tests revealed a liver problem, they told him he was drinking too much. Finally, after three years, his doctors uncovered the real problem. New tests revealed massive amounts of iron in his blood and liver—off-the-charts amounts of iron.

Aran Gordon was rusting to death.

Hemochromatosis is a hereditary disease that disrupts the way the body metabolizes iron. Normally, when your body detects that it has sufficient iron in the blood, it reduces the amount of iron absorbed by your intestines from the food you eat. So even if you stuffed yourself with iron supplements you wouldn't load up with excess iron. Once your body is satisfied with the amount of iron it has, the excess will pass through you instead of being absorbed. But in a person who has hemochromatosis, the body always thinks that it doesn't have enough iron and continues to absorb iron unabated. This iron loading has deadly consequences over time. The excess iron is deposited throughout the body, ultimately damaging the joints, the major organs, and overall body chemistry. Unchecked, hemochromatosis can lead to liver failure, heart failure, diabetes, arthritis, infertility, psychiatric disorders, and even cancer. Unchecked, hemochromatosis will lead to death.

For more than 125 years after Armand Trousseau first described it in 1865, hemochromatosis was thought to be extremely rare. Then, in 1996, the primary gene that causes the condition was isolated for the first time. Since then, we've discovered that the gene for hemochromatosis is the most common genetic variant in people of Western European descent. If your ancestors are Western European, the odds are about one in three, or one in four, that you carry at least one copy of the hemochromatosis gene. Yet only one in two hundred people of Western European ancestry actually have hemochromatosis disease with all of its assorted symptoms. In genetics parlance, the degree that a given gene manifests itself in an individual is called penetrance. If a single gene means everyone who carries it will have dimples, that gene has very high or complete penetrance. On the other hand, a gene that requires a host of other circumstances to really manifest, like the gene for hemochromatosis, is considered to have low penetrance.

Aran Gordon had hemochromatosis. His body had been accumulating iron for more than thirty years. If it were untreated, doctors told him, it would kill him in another five. Fortunately for Aran, one of the oldest medical therapies known to man would soon enter his life and help him manage his iron-loading problem. But to get there, we have to go back.

Why would a disease so deadly be bred into our genetic code? You see, hemochromatosis isn't an infectious disease like malaria, related to bad habits like lung cancer caused by smoking, or a viral invader like smallpox. Hemochromatosis is inherited—and the gene for it is very common in certain populations. In evolutionary terms, that means we asked for it.

Remember how natural selection works. If a given genetic trait makes you stronger—especially if it makes you stronger before you have children—then you're more likely to survive, reproduce, and pass that trait on. If a given trait makes you weaker, you're less likely to survive, reproduce, and pass that trait on. Over time, species "select" those traits that make them stronger and eliminate those traits that make them weaker.

So why is a natural-born killer like hemochromatosis swimming in our gene pool? To answer that, we have to examine the relationship between life—not just human life, but pretty much all life—and iron. But before we do, think about this—why would you take a drug that is guaranteed to kill you in forty years? One reason, right? It's the only thing that will stop you from dying tomorrow.

Just about every form of life has a thing for iron. Humans need iron for nearly every function of our metabolism. Iron carries oxygen from our lungs through the bloodstream and releases it in the body where it's needed. Iron is built into the enzymes that do most of the chemical heavy lifting in our bodies, where it helps us to detoxify poisons and to convert sugars into energy. Iron-poor diets and other iron deficiencies are the most common cause of anemia, a lack of red blood cells that can cause fatigue, shortness of breath, and even heart failure. (As many as 20 percent of menstruating women may have iron-related anemia because their monthly blood loss produces an iron deficiency. That may be the case in as much as half of all pregnant women as well—they're not menstruating, but the passenger they're carrying is hungry for iron too!) Without enough iron our immune system functions poorly, the skin gets pale, and people can feel confused, dizzy, cold, and extremely fatigued.

Iron even explains why some areas of the world's ocean are crystal clear blue and almost devoid of life, while others are bright green . . .

Survival of the Sickest
The Surprising Connections Between Disease and Longevity
. Copyright © by Sharon Moalem. Reprinted by permission of HarperCollins Publishers, Inc. All rights reserved. Available now wherever books are sold.

Excerpted from Survival of the Sickest: The Surprising Connections Between Disease and Longevity by Sharon Moalem, Jonathan Prince
All rights reserved by the original copyright owners. Excerpts are provided for display purposes only and may not be reproduced, reprinted or distributed without the written permission of the publisher.


Please wait while the item is added to your cart...