CART

(0) items

Theory of Machines and Mechanisms,9780195371239
This item qualifies for
FREE SHIPPING!

FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Theory of Machines and Mechanisms

by ; ;
Edition:
4th
ISBN13:

9780195371239

ISBN10:
0195371232
Format:
Hardcover
Pub. Date:
2/26/2010
Publisher(s):
Oxford University Press, USA
List Price: $157.81

Rent Textbook

(Recommended)
 
Term
Due
Price
$63.12

Buy New Textbook

Usually Ships in 3-5 Business Days
$153.86

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

More New and Used
from Private Sellers
Starting at $128.38

Questions About This Book?

Why should I rent this book?
Renting is easy, fast, and cheap! Renting from eCampus.com can save you hundreds of dollars compared to the cost of new or used books each semester. At the end of the semester, simply ship the book back to us with a free UPS shipping label! No need to worry about selling it back.
How do rental returns work?
Returning books is as easy as possible. As your rental due date approaches, we will email you several courtesy reminders. When you are ready to return, you can print a free UPS shipping label from our website at any time. Then, just return the book to your UPS driver or any staffed UPS location. You can even use the same box we shipped it in!
What version or edition is this?
This is the 4th edition with a publication date of 2/26/2010.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. You may receive a brand new copy, but typically, only the book itself.

Related Products


  • Theory of Machines and Mechanisms
    Theory of Machines and Mechanisms





Customer Reviews

Great Quality Book  May 10, 2011
by


This textbook covers the fundamentals of mechanisms, kinematics and dynamics of machines, taking a theoretical approach while also presenting a number of analytical approaches. The revised 4th edition includes more worked examples throughout the text and new and updated end-of-chapter homework problems. It gives a comprehensive treatment of kinematics up till the level demanded for a practicing mechanical engineer. I purchase my college textbooks through ecampus and the purchase is very smooth. The price is very suitable and the textbook arrived earlier than the delivery date and in a very good condition for a used textbook exactly as a described. I highly recommend this vendor.






Theory of Machines and Mechanisms: 5 out of 5 stars based on 1 user reviews.

Summary

Theory of Machines and Mechanisms provides a text for the complete study of displacements, velocities, accelerations, and static and dynamic forces required for the proper design of mechanical linkages, cams, and geared systems. The authors present the background, notation, and nomenclature essential for students to understand the various independent technical approaches that exist in the field of mechanisms, kinematics, and dynamics.

Now fully revised in its fourth edition, this text is ideal for senior undergraduate or graduate students in mechanical engineering who are taking a course in kinematics and/or machine dynamics.

New to the Fourth Edition

- Includes more worked examples throughout, and many new and updated end-of-chapter homework problems

- Coverage of helical gears, bevel gears, worms, and worm gears is now integrated into a single chapter

- Material on planar and spatial dynamic force analysis is now integrated into a single chapter

- A completely new chapter has been added on multi-degree-of-freedom planar linkage analysis

- The chapter on kinematic synthesis has been markedly expanded, and now includes three and four accuracy position graphical methods

- The chapter on static force analysis has been expanded to included coverage of buckling of axially-loaded two-force members under compression

Supplements

- In-text CD includes Working Model animations of many figures from the text to help students visualize and comprehend their movement

- A companion website for instructors (www.oup.com/us/uicker) provides additional information and resources, including PowerPoint-based slides of figures from the text

Author Biography


John J. Uicker, Jr. is a Professor of Mechanical Engineering at the University of Wisconsin - Madison. His teaching and research specialties are in solid geometric modeling, modeling of mechanical motion and their application to computer-aided design and manufacture. He received his Ph.D. in mechanical engineering from Northwestern University and joined the University of Wisconsin faculty in 1967. Uicker is one of the founding members of the US Council for the Theory of Machines and Mechanisms. He served for several years as editor-in-chief of the Mechanism and MachineTheory.

Gordon R. Pennock is an Associate Professor of Mechanical Engineering at Purdue University, West Lafayette, Indiana. His teaching experience is primarily in the area of machine design. His research specialties are in theoretical kinematics and in the dynamics of mechanical motion. He has applied his research to robotics, rotary machinery and biomechanics, including kinematics and dynamics of articulated rigid-body mechanical systems.
He received his Ph.D. degree in mechanical engineering from the University of California, Davis. Since joining the Purdue University faculty in 1983, he has served on several national committees and international program committees. He is the Student Section Advisor of the American Society of Mechanical Engineers (ASME) at Purdue University, Region VI College Relations Chairman, Senior Representative on the Student Section Committee, and a member of the Board on Student Affairs. He is also an Associate of the Internal Combustion Engine Division, ASME, and served as the Technical Committee Chairman of Mechanical Design, Internal Combustion Engine Division, from 1993-1997. He is a Fellow of the American Society of Mechanical Engineers.
Joseph E. Shigley (deceased May 1994) was Professor Emeritus of Mechanical Engineering at the University of Michigan and a Fellow in the American Society of Mechanical Engineers. He held the Mechanisms Committee Award, the Worcester Reed Warner medal and the Machine Design Award. He was an author of eight books, including Mechanical Engineering Design (with Charles R. Mischke) and Applied Mechanics of Materials. He was also Coeditor-in-Chief of the Standard Handbook of Machine Design. He first wrote Kinematic Analysis of Mechanisms in 1958 and Dynamic Analysis of Machines in 1961. These texts became published in a single volume titled Theory of Machines in 1961 and evolved over the years to the current text, Theory of Machines and Mechanisms, now in its third edition.
Professor Shigley was awarded the B.S.M.E. and B.S.E.E. degrees at Purdue University and the M.S. at the University of Michigan. After several years in industry, he devoted his career to teaching, writing, and service to his profession starting first at Clemson University and later at the University of Michigan. His textbooks have been widely used throughout the United States and abroad.

Table of Contents

Preface
About the Authors
Kinematics and Mechanisms
The World of Mechanisms
Introduction
Analysis and Synthesis
The Science of Mechanics
Terminology, Definitions, and Assumptions
Planar, Spherical, and Spatial Mechanisms
Mobility
Classification of Mechanisms
Kinematic Inversion
Grashof's Law
Mechanical Advantage
Problems
Position and Displacement
Locus of a Moving Point
Position of a Point
Position Difference Between Two Points
Apparent Position of a Point
Absolute Position of a Point
The Loop-Closure Equation
Graphic Position Analysis
Algebraic Position Analysis
Complex-Algebra Solutions of Planar Vector Equations
Complex Polar Algebra
The Chace Solutions to Planar Vector Equations
Position Analysis Techniques
Coupler-Curve Generation
Displacement of a Moving Point
Displacement Difference Between Two Points
Rotation and Translation
Apparent Displacement
Absolute Displacement
Apparent Angular Displacement
Problems
Velocity
Definition of Velocity
Rotation of a Rigid Body
Velocity Difference Between Points of a Rigid Body
Graphic Methods
Velocity Polygons
Apparent Velocity of a Point in a Moving Coordinate System
Apparent Angular Velocity
Direct Contact and Rolling Contact
Systematic Strategy for Velocity Analysis
Analytic Methods
Complex-Algebra Methods
The Vector Method
The Method of Kinematic Coefficients
Instantaneous Center of Velocity
The Aronhold-Kennedy Theorem of Three Centers
Locating Instant Centers of Velocity
Velocity Analysis Using Instant Centers
The Angular Velocity Ratio Theorem
Relationships Between First-Order Kinematic Coefficients and Instant Centers
Freudenstein's Theorem
Indices of Merit
Mechanical Advantage
Centrodes
Problems
Acceleration
Definition of Acceleration
Angular Acceleration
Acceleration Difference Between Points of a Rigid Body
Acceleration Polygons
Apparent Acceleration of a Point in a Moving Coordinate System
Apparent Angular Acceleration
Direct Contact and Rolling Contact
Systematic Strategy for Acceleration Analysis
Analytic Methods
Complex-Algebra Methods
The Chace Solutions
The Method of Kinematic Coefficients
The Euler-Savary Equation
The Bobillier Constructions
The Instant Center of Acceleration
The Bresse Circle (or de La Hire Circle)
Radius of Curvature of Point Trajectory Using Kinematic Coefficients
The Cubic of Stationary Curvature
Problems
Multi-Degree-of-Freedom Planar Linkages
Introduction
Position Analysis
Algebraic Solution
Graphic Methods
Velocity Polygons
Instant Centers of Velocity
First-Order Kinematic Coefficients
The Method of Superposition
Graphic Method
Acceleration Polygons
Second-Order Kinematic Coefficients
Path Curvature of a Coupler Point
The Finite Difference Method
Problems
Design of Mechanisms
Cam Design
Introduction
Classification of Cams and Followers
Displacement Diagrams
Graphical Layout of Cam Profiles
Kinematic Coefficients of the Follower Motion
High-Speed Cams
Standard Cam Motions
Matching Derivatives of Displacement Diagrams
Plate Cam with Reciprocating Flat-Face Follower
Plate Cam with Reciprocating Roller Follower
Problems
Spur Gears
Terminology and Definitions
Fundamental Law of Toothed Gearing
Involute Properties
Interchangeable Gears
AGMA Standards
Fundamentals of Gear-Tooth Action
The Manufacture of Gear Teeth
Interference and Undercutting
Contact Ratio
Varying the Center Distance
Involutometry
Nonstandard Gear Teeth
Problems
Helical Gears, Bevel Gears, Worms and Worm Gears
Parallel-Axis Helical Gears
Helical Gear Tooth Relations
Helical Gear Tooth Proportions
Contact of Helical Gear Teeth
Replacing Spur Gears with Helical Gears
Herringbone Gears
Crossed-Axis Helical Gears
Straight-Tooth Bevel Gears
Tooth Proportions for Bevel Gears
Crown and Face Gears
Spiral Bevel Gears
Hypoid Gears
Worms and Worm Gears
Problems
Mechanism Trains
Parallel-Axis Gear Trains
Examples of Gear Trains
Determining Tooth Numbers
Epicyclic Gear Trains
Bevel Gear Epicyclic Trains
Analysis of Epicyclic Gear Trains by Formula
Tabular Analysis of Epicyclic Gear Trains
Summers and Differentials
All Wheel Drive Train
Problems
Synthesis of Linkages
Type, Number, and Dimensional Synthesis
Function Generation, Path Generation, and Body Guidance
Two Finitely Separated Positions of a Rigid Body (N = 2)
Three Finitely Separated Positions of a Rigid Body (N = 3)
Four Finitely Separated Positions of a Rigid Body (N = 4)
Five Finitely Separated Positions of a Rigid Body (N = 5)
Precision Positions
Structural Error
Chebychev Spacing
The Overlay Method
Coupler-Curve Synthesis
Cognate Linkages
The Roberts-Chebychev Theorem
Freudenstein's Equation
Analytic Synthesis Using Complex Algebra
Synthesis of Dwell Mechanisms
Intermittent Rotary Motion
Problems
Spatial Mechanisms
Introduction
Exceptions to the Mobility of Mechanisms
The Spatial Position-Analysis Problem
Spatial Velocity and Acceleration Analyses
Euler Angles
The Denavit-Hartenberg Parameters
Transformation-Matrix Position Analysis
Matrix Velocity and Acceleration Analyses
Generalized Mechanism Analysis Computer Programs
Problems
Robotics
Introduction
Topological Arrangements of Robotic Arms
Forward Kinematics
Inverse Position Analysis
Inverse Velocity and Acceleration Analyses
Robot Actuator Force Analysis
Problems
Dynamics of Machines
Static Force Analysis
Introduction
Newton's Laws
Systems of Units
Applied and Constraint Forces
Free-Body Diagrams
Conditions for Equilibrium
Two- and Three-Force Members
Four-Force Members
Friction-Force Models
Static Force Analysis with Friction
Spur- and Helical-Gear Force Analysis
Straight-Tooth-Bevel-Gear Force Analysis
The Method of Virtual Work
Euler Column Formula
The Critical Unit Load
Critical Unit Load and the Slenderness Ratio
The Johnson Parabolic Equation
Problems
Dynamic Force Analysis
Introduction
Centroid and Center of Mass
Mass Moments and Products of Inertia
Inertia Forces and D'Alembert's Principle
The Principle of Superposition
Planar Rotation about a Fixed Center
Shaking Forces and Moments
Complex Algebra Approach
Equation of Motion From Power Equation
Measuring Mass Moment of Inertia
Transformation of Inertia Axes
Euler's Equations of Motion
Impulse and Momentum
Angular Impulse and Angular Momentum
Problems
Vibration Analysis
Differential Equations of Motion
A Vertical Model
Solution of the Differential Equation
Step Input Forcing
Phase-Plane Representation
Phase-Plane Analysis
Transient Disturbances
Free Vibration with Viscous Damping
Damping Obtained by Experiment
Phase-Plane Representation of Damped Vibration
Response to Periodic Forcing
Harmonic Forcing
Forcing Caused by Unbalance
Relative Motion
Isolation
Rayleigh's Method
First and Second Critical Speeds of a Shaft
Torsional Systems
Problems
Dynamics of Reciprocating Engines
Engine Types
Indicator Diagrams
Dynamic Analysis-General
Gas Forces
Equivalent Masses
Inertia Forces
Bearing Loads in a Single-Cylinder Engine
Crankshaft Torque
Shaking Forces of Engines
Computation Hints
Problems
Balancing
Static Unbalance
Equations of Motion
Static Balancing Machines
Dynamic Unbalance
Analysis of Unbalance
Dynamic Balancing
Balancing Machines
Field Balancing with a Programmable Calculator
Balancing a Single-Cylinder Engine
Balancing Multi-Cylinder Engines
Analytical Technique for Balancing Multi-Cylinder Engines
Balancing Linkages
Balancing of Machines
Problems
Cam Dynamics
Rigid- and Elastic-Body Cam Systems
Analysis of an Eccentric Cam
Effect of Sliding Friction
Analysis of Disk Cam with Reciprocating Roller Follower
Analysis of Elastic Cam Systems
Unbalance, Spring Surge, and Windup
Problems
Flywheels, Governors, and Gyroscopes
Dynamic Theory of Flywheels
Integration Technique
Multi-Cylinder Engine Torque Summation
Classification of Governors
Centrifugal Governors
Inertia Governors
Mechanical Control Systems
Standard Input Functions
Solution of Linear Differential Equations
Analysis of Proportional-Error Feedback Systems
Introduction to Gyroscopes
The Motion of a Gyroscope
Steady or Regular Precession
Forced Precession
Problems
Appendixes
Tables
Standard SI Prefixes
Conversion from US Customary Units to SI Units
Conversion from SI Units to US Customary Units
Properties of Areas
Mass Moments of Inertia
Involute Function
Answers to Selected Problems
Index
Table of Contents provided by Publisher. All Rights Reserved.


Please wait while the item is added to your cart...