did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9781118352342

Transient Analysis of Power Systems Solution Techniques, Tools and Applications

by
  • ISBN13:

    9781118352342

  • ISBN10:

    1118352343

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2015-01-27
  • Publisher: Wiley-IEEE Press

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

List Price: $185.54 Save up to $62.15
  • Rent Book $123.39
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-4 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

Supplemental Materials

What is included with this book?

Summary

The simulation of electromagnetic transients is a mature field that plays an important role in the design of modern power systems. Since the first steps in this field to date, a significant effort has been dedicated to the development of new techniques and more powerful software tools. Sophisticated models, complex solution techniques and powerful simulation tools have been developed to perform studies that are of supreme importance in the design of modern power systems. The first developments of transients tools were mostly aimed at calculating over-voltages. Presently, these tools are applied to a myriad of studies (e.g. FACTS and Custom Power applications, protective relay performance, simulation of smart grids) for which detailed models and fast solution methods can be of paramount importance.

This book provides a basic understanding of the main aspects to be considered when performing electromagnetic transients studies, detailing the main applications of present electromagnetic transients (EMT) tools, and discusses new developments for enhanced simulation capability.

Key features:

  • Provides up-to-date information on solution techniques and software capabilities for simulation of electromagnetic transients.
  • Covers key aspects that can expand the capabilities of a transient software tool (e.g. interfacing techniques) or speed up transients simulation (e.g. dynamic model averaging).
  • Applies EMT-type tools to a wide spectrum of studies that range from fast electromagnetic transients to slow electromechanical transients, including power electronic applications, distributed energy resources and protection systems.
  • Illustrates the application of EMT tools to the analysis and simulation of smart grids.

Author Biography

Juan A. Martinez-Velasco received his Ingeniero Industrial and Doctor Ingeniero Industrial degrees from the Universitat Politècnica de Catalunya (UPC), Spain. He is currently with the Departament d'Enginyeria Elèctrica of the UPC where his teaching and research areas cover Power Systems Analysis, Transmission and Distribution, Power Quality and Electromagnetic Transients. He has authored and co-authored more than 200 journal and conference papers. He is also an active member of several IEEE and CIGRE Working Groups.

Table of Contents

Preface xv

About the Editor xvii

List of Contributors xix

1 Introduction to Electromagnetic Transient Analysis of Power Systems 1
Juan A. Martinez-Velasco

1.1 Overview 1

1.2 Scope of the Book 4

References 6

2 Solution Techniques for Electromagnetic Transients in Power Systems 9
Jean Mahseredjian, Ilhan Kocar and Ulas Karaagac

2.1 Introduction 9

2.2 Application Field for the Computation of Electromagnetic Transients 10

2.3 The Main Modules 11

2.4 Graphical User Interface 11

2.5 Formulation of Network Equations for Steady-State and Time-Domain Solutions 12

2.5.1 Nodal Analysis and Modified-Augmented-Nodal-Analysis 13

2.5.2 State-Space Analysis 20

2.5.3 Hybrid Analysis 21

2.5.4 State-Space Groups and MANA 25

2.5.5 Integration Time-Step 27

2.6 Control Systems 28

2.7 Multiphase Load-Flow Solution and Initialization 29

2.7.1 Load-Flow Constraints 31

2.7.2 Initialization of Load-Flow Equations 33

2.7.3 Initialization from Steady-State Solution 33

2.8 Implementation 34

2.9 Conclusions 36

References 36

3 Frequency Domain Aspects of Electromagnetic Transient Analysis of Power Systems 39
Jos´e L. Naredo, Jean Mahseredjian, Ilhan Kocar, Jos´e A. Guti´errez–Robles and Juan A. Martinez-Velasco

3.1 Introduction 39

3.2 Frequency Domain Basics 40

3.2.1 Phasors and FD Representation of Signals 40

3.2.2 Fourier Series 43

3.2.3 Fourier Transform 46

3.3 Discrete-Time Frequency Analysis 48

3.3.1 Aliasing Effect 50

3.3.2 Sampling Theorem 51

3.3.3 Conservation of Information and the DFT 53

3.3.4 Fast Fourier Transform 54

3.4 Frequency-Domain Transient Analysis 56

3.4.1 Fourier Transforms and Transients 56

3.4.2 Fourier and Laplace Transforms 62

3.4.3 The Numerical Laplace Transform 63

3.4.4 Application Examples with the NLT 65

3.4.5 Brief History of NLT Development 65

3.5 Multirate Transient Analysis 66

3.6 Conclusions 69

Acknowledgement 70

References 70

4 Real-Time Simulation Technologies in Engineering 72
Christian Dufour and Jean B´elanger

4.1 Introduction 72

4.2 Model-Based Design and Real-Time Simulation 73

4.3 General Considerations about Real-Time Simulation 74

4.3.1 The Constraint of Real-Time 74

4.3.2 Stiffness Issues 75

4.3.3 Simulator Bandwidth Considerations 75

4.3.4 Simulation Bandwidth vs. Applications 75

4.3.5 Achieving Very Low Latency for HIL Application 76

4.3.6 Effective Parallel Processing for Fast EMT Simulation 77

4.3.7 FPGA-Based Multirate Simulators 79

4.3.8 Advanced Parallel Solvers without Artificial Delays or Stublines: Application to Active Distribution Networks 79

4.3.9 The Need for Iterations in Real-Time 80

4.4 Phasor-Mode Real-Time Simulation 82

4.5 Modern Real-Time Simulator Requirements 82

4.5.1 Simulator I/O Requirements 83

4.6 Rapid Control Prototyping and Hardware-in-the-Loop Testing 85

4.7 Power Grid Real-Time Simulation Applications 85

4.7.1 Statistical Protection System Study 85

4.7.2 Monte Carlo Tests for Power Grid Switching Surge System Studies 87

4.7.3 Modular Multilevel Converter in HVDC Applications 88

4.7.4 High-End Super-Large Power Grid Simulations 89

4.8 Motor Drive and FPGA-Based Real-Time Simulation Applications 90

4.8.1 Industrial Motor Drive Design and Testing Using CPU Models 90

4.8.2 FPGA Modelling of SRM and PMSM Motor Drives 91

4.9 Educational System: RPC-Based Study of DFIM Wind Turbine 94

4.10 Mechatronic Real-Time Simulation Applications 95

4.10.1 Aircraft Flight Training Simulator 95

4.10.2 Aircraft Flight Parameter Identification 95

4.10.3 International Space Station Robotic Arm Testing 95

4.11 Conclusion 97

References 97

5 Calculation of Power System Overvoltages 100
Juan A. Martinez-Velasco and Francisco Gonz´alez-Molina

5.1 Introduction 100

5.2 Power System Overvoltages 101

5.2.1 Temporary Overvoltages 101

5.2.2 Slow-Front Overvoltages 102

5.2.3 Fast-Front Overvoltages 102

5.2.4 Very-Fast-Front Overvoltages 103

5.3 Temporary Overvoltages 103

5.3.1 Introduction 103

5.3.2 Modelling Guidelines for Temporary Overvoltages 103

5.3.3 Faults to Grounds 104

5.3.4 Load Rejection 110

5.3.5 Harmonic Resonance 115

5.3.6 Energization of Unloaded Transformers 120

5.3.7 Ferroresonance 125

5.3.8 Conclusions 133

5.4 Switching Overvoltages 135

5.4.1 Introduction 135

5.4.2 Modelling Guidelines 135

5.4.3 Switching Overvoltages 139

5.4.4 Case Studies 149

5.4.5 Validation 154

5.5 Lightning Overvoltages 154

5.5.1 Introduction 154

5.5.2 Modelling Guidelines 155

5.5.3 Case Studies 163

5.5.4 Validation 172

5.6 Very Fast Transient Overvoltages in Gas Insulated Substations 174

5.6.1 Introduction 174

5.6.2 Origin of VFTO in GIS 174

5.6.3 Propagation of VFTs in GISs 176

5.6.4 Modelling Guidelines 180

5.6.5 Case Study 9: VFT in a 765 kV GIS 182

5.6.6 Statistical Calculation 183

5.6.7 Validation 185

5.7 Conclusions 187

Acknowledgement 187

References 187

6 Analysis of FACTS Controllers and their Transient Modelling Techniques 195
Kalyan K. Sen

6.1 Introduction 195

6.3 Modelling Guidelines 206

6.3.1 Representation of a Power System 206

6.3.2 Representation of System Control 206

6.3.3 Representation of a Controlled Switch 209

6.3.4 Simulation Errors and Control 210

6.4 Modelling of FACTS Controllers 210

6.4.1 Simulation of an Independent PFC in a Single Line Application 212

6.4.2 Simulation of a Voltage Regulating Transformer 212

6.4.3 Simulation of a Phase Angle Regulator 214

6.4.4 Simulation of a Unified Power Flow Controller 215

6.5 Simulation Results of a UPFC 230

6.6 Simulation Results of an ST 238

6.7 Conclusion 245

Acknowledgement 245

References 245

7 Applications of Power Electronic Devices in Distribution Systems 248
Arindam Ghosh and Farhad Shahnia

7.1 Introduction 248

7.2 Modelling of Converter and Filter Structures for CPDs 250

7.2.1 Three-Phase Converter Structures 250

7.2.2 Filter Structures 251

7.2.3 Dynamic Simulation of CPDs 252

7.3 Distribution Static Compensator (DSTATCOM) 253

7.3.1 Current Control Using DSTATCOM 253

7.3.2 Voltage Control Using DSTATCOM 256

7.4 Dynamic Voltage Restorer (DVR) 258

7.5 Unified Power Quality Conditioner (UPQC) 263

7.6 Voltage Balancing Using DSTATCOM and DVR 267

7.7 Excess Power Circulation Using CPDs 271

7.7.1 Current-Controlled DSTATCOM Application 271

7.7.2 Voltage-Controlled DSTATCOM Application 272

7.7.3 UPQC Application 276

7.8 Conclusions 278

References 278

8 Modelling of Electronically Interfaced DER Systems for Transient Analysis 280
Amirnaser Yazdani and Omid Alizadeh

8.1 Introduction 280

8.2 Generic Electronically Interfaced DER System 281

8.3 Realization of Different DER Systems 283

8.3.1 PV Energy Systems 283

8.3.2 Fuel-Cell Systems 284

8.3.3 Battery Energy Storage Systems 284

8.3.4 Supercapacitor Energy Storage System 285

8.3.5 Superconducting Magnetic Energy Storage System 285

8.3.6 Wind Energy Systems 286

8.3.7 Flywheel Energy Storage Systems 287

8.4 Transient Analysis of Electronically Interfaced DER Systems 287

8.5 Examples 288

8.5.1 Example 1: Single-Stage PV Energy System 288

8.5.2 Example 2: Direct-Drive Variable-Speed Wind Energy System 298

8.6 Conclusion 315

References 315

9 Simulation of Transients for VSC-HVDC Transmission Systems Based on Modular Multilevel Converters 317
Hani Saad, S´ebastien Denneti`ere, Jean Mahseredjian, Tarek Ould-Bachir and Jean-Pierre David

9.1 Introduction 317

9.2 MMC Topology 318

9.3 MMC Models 320

9.3.1 Model 1 – Full Detailed 320

9.3.2 Model 2 – Detailed Equivalent 321

9.3.3 Model 3 – Switching Function of MMC Arm 322

9.3.4 Model 4 – AVM Based on Power Frequency 325

9.4 Control System 327

9.4.1 Operation Principle 327

9.4.2 Upper-Level Control 328

9.4.3 Lower-Level Control 333

9.4.4 Control Structure Requirement Depending on MMC Model Type 336

9.5 Model Comparisons 336

9.5.1 Step Change on Active Power Reference 337

9.5.2 Three-Phase AC Fault 337

9.5.3 Influence of MMC Levels 338

9.5.4 Pole-to-Pole DC Fault 338

9.5.5 Startup Sequence 340

9.5.6 Computational Performance 340

9.6 Real-Time Simulation of MMC Using CPU and FPGA 342

9.6.1 Relation between Sampling Time and N 344

9.6.2 Optimization of Model 2 for Real-Time Simulation 345

9.6.3 Real-Time Simulation Setup 346

9.6.4 CPU-Based Model 347

9.6.5 FPGA-Based Model 350

9.7 Conclusions 356

References 357

10 Dynamic Average Modelling of Rectifier Loads and AC-DC Converters for Power System Applications 360
Sina Chiniforoosh, Juri Jatskevich, Hamid Atighechi and Juan A. Martinez-Velasco

10.1 Introduction 360

10.2 Front-End Diode Rectifier System Configurations 361

10.3 Detailed Analysis and Modes of Operation 365

10.4 Dynamic Average Modelling 368

10.4.1 Selected Dynamic AVMs 370

10.4.2 Computer Implementation 372

10.5 Verification and Comparison of the AVMs 372

10.5.1 Steady-State Characteristics 372

10.5.2 Model Dynamic Order and Eigenvalue Analysis 376

10.5.3 Dynamic Performance Under Balanced and Unbalanced Conditions 377

10.5.4 Input Sequence Impedances under Unbalanced Conditions 382

10.5.5 Small-Signal Input/Output Impedances 383

10.6 Generalization to High-Pulse-Count Converters 386

10.6.1 Detailed Analysis 387

10.6.2 Dynamic Average Modelling 388

10.7 Generalization to PWM AC-DC Converters 391

10.7.1 PWM Voltage-Source Converters 391

10.7.2 Dynamic Average-Value Modelling of PWM Voltage-Source Converters 392

10.8 Conclusions 394

Appendix 394

References 395

11 Protection Systems 398
Juan A. Martinez-Velasco

11.1 Introduction 398

11.2 Modelling Guidelines for Power System Components 400

11.2.1 Line Models 400

11.2.2 Insulated Cables 401

11.2.3 Source Models 401

11.2.4 Transformer Models 401

11.2.5 Circuit Breaker Models 403

11.3 Models of Instrument Transformers 403

11.3.1 Introduction 403

11.3.2 Current Transformers 404

11.3.3 Rogowski Coils 408

11.3.4 Coupling Capacitor Voltage Transformers 410

11.3.5 Voltage Transformers 412

11.4 Relay Modelling 412

11.4.1 Introduction 412

11.4.2 Classification of Relay Models 412

11.4.3 Relay Models 413

11.5 Implementation of Relay Models 418

11.5.1 Introduction 418

11.5.2 Sources of Information for Building Relay Models 419

11.5.3 Software Tools 420

11.5.4 Implementation of Relay Models 421

11.5.5 Interfacing Relay Models to Recorded Data 422

11.5.6 Applications of Relay Models 423

11.5.7 Limitations of Relay Models 424

11.6 Validation of Relay Models 424

11.6.1 Validation Procedures 424

11.6.2 Relay Model Testing Procedures 425

11.6.3 Accuracy Assessment 426

11.6.4 Relay Testing Facilities 426

11.7 Case Studies 427

11.7.1 Introduction 427

11.7.2 Case Study 1: Simulation of an Electromechanical Distance Relay 428

11.7.3 Case Study 2: Simulation of a Numerical Distance Relay 430

11.8 Protection of Distribution Systems 450

11.8.1 Introduction 450

11.8.2 Protection of Distribution Systems with Distributed Generation 451

11.8.3 Modelling of Distribution Feeder Protective Devices 451

11.8.4 Protection of the Interconnection of Distributed Generators 460

11.8.5 Case Study 3 460

11.8.6 Case Study 4 465

11.9 Conclusions 471

Acknowledgement 475

References 476

12 Time-Domain Analysis of the Smart Grid Technologies: Possibilities and Challenges 481
Francisco de Le´on, Reynaldo Salcedo, Xuanchang Ran and Juan A. Martinez-Velasco

12.1 Introduction 481

12.2 Distribution Systems 482

12.2.1 Radial Distribution Systems 483

12.2.2 Networked Distribution Systems 484

12.3 Restoration and Reconfiguration of the Smart Grid 487

12.3.1 Introduction 487

12.3.2 Heavily Meshed Networked Distribution Systems 487

12.4 Integration of Distributed Generation 498

12.4.1 Scope 498

12.4.2 Radial Distribution Systems 499

12.4.3 Heavily Meshed Networked Distribution Systems 503

12.5 Overvoltages in Distribution Networks 515

12.5.1 Introduction 515

12.5.2 Ferroresonant Overvoltages 516

12.5.3 Long-Duration Overvoltages due to Backfeeding 519

12.6 Development of Data Translators for Interfacing Power-Flow Programs with EMTP-Type Programs 529

12.6.1 Introduction 529

12.6.2 Power-Flow to EMTP-RV Translator 530

12.6.3 Example of the Translation of a Transmission Line 533

12.6.4 Challenges of Development 533

12.6.5 Model Validation 535

12.6.6 Recommendations 542

Acknowledgement 546

References 546

13 Interfacing Methods for Electromagnetic Transient Simulation: New Possibilities for Analysis and Design 552
Shaahin Filizadeh

13.1 Introduction 552

13.2 Need for Interfacing 553

13.3 Interfacing Templates 554

13.3.1 Static Interfacing 554

13.3.2 Dynamic Interfacing and Memory Management 555

13.3.3 Wrapper Interfaces 555

13.4 Interfacing Implementation Options: External vs Internal Interfaces 555

13.4.1 External Interfaces 556

13.4.2 Internal Interfaces 556

13.5 Multiple Interfacing 556

13.5.1 Core-Type Interfacing 557

13.5.2 Chain-Type Interfacing 557

13.5.3 Loop Interfacing 558

13.6 Examples of Interfacing 558

13.6.1 Interfacing to Matlab/Simulink 558

13.6.2 Wrapper Interfacing: Run-Controllers and Multiple-Runs 560

13.7 Design Process Using EMT Simulation Tools 560

13.7.1 Parameter Selection Techniques 561

13.7.2 Uncertainty Analysis 563

13.8 Conclusions 566

References 566

AnnexA: Techniques and Computer Codes for Rational Modelling of Frequency-Dependent Components and Subnetworks 568
Bjørn Gustavsen

A.1 Introduction 568

A.2 Rational Functions 569

A.3 Time-Domain Simulation 569

A.4 Fitting Techniques 569

A.4.1 Polynomial Fitting 569

A.4.2 Bode’s Asymptotic Fitting 570

A.4.3 Vector Fitting 570

A.5 Passivity 571

A.6 Matrix Fitting Toolbox 572

A.6.1 General 572

A.6.2 Overview 572

A.7 Example A.1: Electrical Circuit 573

A.8 Example 6.2: High-Frequency Transformer Modelling 575

A.8.1 Measurement 575

A.8.2 Rational Approximation 575

A.8.3 Passivity Enforcement 575

A.8.4 Time-Domain Simulation 576

A.8.5 Comparison with Time-Domain Measurement 577

References 579

AnnexB: Dynamic System Equivalents 581
Udaya D. Annakkage

B.1 Introduction 581

B.2 High-Frequency Equivalents 582

B.2.1 Introduction 582

B.2.2 Frequency-Dependent Network Equivalent (FDNE) 582

B.2.3 Examples of High-Frequency FDNE 583

B.2.4 Two-Layer Network Equivalent (TLNE) 586

B.2.5 Modified Two-Layer Network Equivalent 592

B.2.6 Other Methods 594

B.2.7 Numerical Issues 594

B.3 Low-Frequency Equivalents 595

B.3.1 Introduction 595

B.3.2 Modal Methods 596

B.3.3 Coherency Methods 596

B.3.4 Measurement or Simulation-Based Methods 597

B.4 Wideband Equivalents 597

B.5 Conclusions 597

References 598

Index 601

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program