(0) items

Understanding Physical Chemistry,9781118298152
This item qualifies for

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Understanding Physical Chemistry



Pub. Date:
John Wiley & Sons Inc

Questions About This Book?

Why should I rent this book?
Renting is easy, fast, and cheap! Renting from can save you hundreds of dollars compared to the cost of new or used books each semester. At the end of the semester, simply ship the book back to us with a free UPS shipping label! No need to worry about selling it back.
How do rental returns work?
Returning books is as easy as possible. As your rental due date approaches, we will email you several courtesy reminders. When you are ready to return, you can print a free UPS shipping label from our website at any time. Then, just return the book to your UPS driver or any staffed UPS location. You can even use the same box we shipped it in!
What version or edition is this?
This is the edition with a publication date of 5/6/2013.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. You may receive a brand new copy, but typically, only the book itself.


Understanding Physical Chemistry takes an innovative approach to teaching this fundamentally important subject, by stressing core ideas such as the entropic forces that drive all chemical processes and the quantum states that dictate the structures and colors of atoms and molecules. This elegant and streamlined textbook (of under 400 pages) aims to instill a deep understanding of physical chemistry by focusing exclusively on those ideas that are deemed to be either too important or too interesting to exclude. These core ideas are demystified by explaining where they come from, why they make sense, and how they may be applied to understanding topics ranging from molecular spectroscopy and chemical reactivity to biological self-assembly and liquid computer simulation strategies. Another unique feature of this groundbreaking textbook is the insight it provides into the scientific discovery process by highlighting the personal perspectives and conceptual struggles of people such as Gibbs, Einstein, and Schrödinger, who pioneered this interesting and practically important field.

Table of Contents

1 The Basic Ideas 11

1.1 Things to Keep in Mind 11

1.2 Why is Energy so Important? 15

1.3 Quantization is Everywhere 23

1.4 Thermal Energies and Populations 34

1.5 Classical Energy Hyper-Spheres 47

1.6 Homework Problems 57

2 Introduction to Chemical Thermodynamics 65

2.1 What is Thermodynamics Good For? 65

2.2 The Laws of Thermodynamics 69

2.3 Important Ideal Gas Examples 76

2.4 Homework Problems 93

3 Axiomatic Foundations of Thermodynamics 101

3.1 Fundamental Equations and Postulates 101

3.2 Temperature and Thermal Equilibrium 112

3.3 Chemical and Phase Equilibria 115

3.4 Euler and Gibbs-Duhem Relations 124

3.5 Transformed Potential Functions (A, H, G etc.) 127

3.6 Other Sorts of Thermodynamic Work 133

3.7 Homework Problems 136

4 Thermodynamic Calculation Strategies and Applications 143

4.1 Reduction of Thermodynamic Derivatives 144

4.2 Chemical Reaction Thermodynamics 153

4.3 Self-Assembly Thermodynamics 157

4.4 Spontaneous Consequences 162

4.5 Homework Problems 174

5 Non-Ideal Systems and Computer Simulations 181

5.1 Quantifying Non-Idealities 182

5.2 Simple Models of Molecular Fluids 184

5.3 Super-Molecule Statistical Mechanics 198

5.4 Mixed Points of View on Entropy 204

5.5 Kirkwood, Widom, and Jarzynski 210

5.6 Homework Problems 222

6 Introduction to Quantum Mechanics 229

6.1 The Dawn of Quantum Phenomena 229

6.2 The Rise of Wave Mechanics 230

6.3 Wave Equations and Eigenfunctions 232

6.4 Quantum Operators and Observables 238

6.5 Formal Postulates of Quantum Mechanics 256

6.6 Homework Problems 260

7 Simple Systems and Chemical Applications 265

7.1 Free, Con_ned, and Obstructed Particles 265

7.2 Quantum Harmonic Oscillators 279

7.3 Raising and Lowering Operators 285

7.4 Eigenvectors, Brackets and Matrices 287

7.5 Three Dimensional Systems 290

7.6 Homework Problems 300

8 Atoms and Spinning Particle-Waves 309

8.1 The Hydrogen Atom 309

8.2 Spin Angular Momentum 317

8.3 Fermi, Bose, and Pauli Exclusion 323

8.4 Multi-Electron Atoms and the Periodic Table 326

8.5 Homework Problems 334

9 Covalent Bonding and Optical Spectroscopy 339

9.1 Covalent Bond Formation 339

9.2 Molecular Bonding Made Easy 351

9.3 Time Dependent Processes 358

9.4 Optical Spectroscopy 362

9.5 Introduction to Ab Initio Methods 376

9.6 Homework Problems 383

10 Chemical and Photon-Molecule Reactions 391

10.1 Gas Phase Reaction Equilibria 391

10.2 Principles of Reaction Dynamics 403

10.3 Prediction of Reaction Rate Constants 407

10.4 Photon-Molecule Reactions 416

10.5 Homework Problems 425

Appendices 433

A Answers to Problems that Test Your Understanding 433

B Fundamental Constants and Mathematical Identities 439

Please wait while the item is added to your cart...