University Calculus Early Transcendentals, Multivariable

by ; ;
  • ISBN13:


  • ISBN10:


  • Edition: 3rd
  • Format: Paperback
  • Copyright: 12/24/2014
  • Publisher: Pearson

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $59!
    Your order must be $59 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $139.00 Save up to $83.40
  • Rent Book $55.60
    Add to Cart Free Shipping


Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Used and Rental copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.


Note: You are purchasing a standalone product; MyMathLab does not come packaged with this content. MyMathLab is not a self-paced technology and should only be purchased when required by an instructor. Students, if interested in purchasing this title with MyMathLab, ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information.


If you would like to purchase both the physical text and MyMathLab, search for:

0321999622 / 9780321999627 University Calculus, Early Transcendentals, Multivariable Plus MyMathLab -- Access Card Package

Package consists of:  

0321431308 / 9780321431301 MyMathLab -- Glue-in Access Card

0321654064 / 9780321654069 MyMathLab Inside Star Sticker

0321999606 / 9780321999603 University Calculus, Early Transcendentals, Multivariable



University Calculus, Early Transcendentals, Multivariable, Third Edition helps students generalize and apply the key ideas of calculus through clear and precise explanations, thoughtfully chosen examples, meticulously crafted figures, and superior exercise sets. This text offers the right mix of basic, conceptual, and challenging exercises, along with meaningful applications. This revision features more examples, more mid-level exercises, more figures, improved conceptual flow, and the best in technology for learning and teaching.


Note: This text is only chapters 9-17.


If you want the complete text order ISBN 0321999584  9780321999580  University Calculus, Early Transcendentals, 3/e/Hass / Weir 

Author Biography

Joel Hass received his PhD from the University of California—Berkeley. He is currently a professor of mathematics at the University of California—Davis. He has coauthored six widely used calculus texts as well as two calculus study guides. He is currently on the editorial board of Geometriae Dedicata and Media-Enhanced Mathematics. He has been a member of the Institute for Advanced Study at Princeton University and of the Mathematical Sciences Research Institute, and he was a Sloan Research Fellow. Hass’s current areas of research include the geometry of proteins, three dimensional manifolds, applied math, and computational complexity. In his free time, Hass enjoys kayaking.


Maurice D. Weir holds a DA and MS from Carnegie-Mellon University and received his BS at Whitman College. He is a Professor Emeritus of the Department of Applied Mathematics at the Naval Postgraduate School in Monterey, California. Weir enjoys teaching Mathematical Modeling and Differential Equations. His current areas of research include modeling and simulation as well as mathematics education. Weir has been awarded the Outstanding Civilian Service Medal, the Superior Civilian Service Award, and the Schieffelin Award for Excellence in Teaching. He has coauthored eight books, including the University Calculus series and Thomas’ Calculus.


Table of Contents

9. Infinite Sequences and Series

9.1 Sequences

9.2 Infinite Series

9.3 The Integral Test

9.4 Comparison Tests

9.5 Absolute Convergence; The Ratio and Root Tests

9.6 Alternating Series and Conditional Convergence

9.7 Power Series

9.8 Taylor and Maclaurin Series

9.9 Convergence of Taylor Series

9.10 The Binomial Series and Applications of Taylor Series


10. Parametric Equations and Polar Coordinates

10.1 Parametrizations of Plane Curves

10.2 Calculus with Parametric Curves

10.3 Polar Coordinates

10.4 Graphing in Polar Coordinates

10.5 Areas and Lengths in Polar Coordinates

10.6 Conics in Polar Coordinates


11. Vectors and the Geometry of Space

11.1 Three-Dimensional Coordinate Systems

11.2 Vectors

11.3 The Dot Product

11.4 The Cross Product

11.5 Lines and Planes in Space

11.6 Cylinders and Quadric Surfaces


12. Vector-Valued Functions and Motion in Space

12.1 Curves in Space and Their Tangents

12.2 Integrals of Vector Functions; Projectile Motion

12.3 Arc Length in Space

12.4 Curvature and Normal Vectors of a Curve

12.5 Tangential and Normal Components of Acceleration

12.6 Velocity and Acceleration in Polar Coordinates


13. Partial Derivatives

13.1 Functions of Several Variables

13.2 Limits and Continuity in Higher Dimensions

13.3 Partial Derivatives

13.4 The Chain Rule

13.5 Directional Derivatives and Gradient Vectors

13.6 Tangent Planes and Differentials

13.7 Extreme Values and Saddle Points

13.8 Lagrange Multipliers


14. Multiple Integrals

14.1 Double and Iterated Integrals over Rectangles

14.2 Double Integrals over General Regions

14.3 Area by Double Integration

14.4 Double Integrals in Polar Form

14.5 Triple Integrals in Rectangular Coordinates

14.6 Moments and Centers of Mass

14.7 Triple Integrals in Cylindrical and Spherical Coordinates

14.8 Substitutions in Multiple Integrals


15. Integration in Vector Fields

15.1 Line Integrals

15.2 Vector Fields and Line Integrals: Work, Circulation, and Flux

15.3 Path Independence, Conservative Fields, and Potential Functions

15.4 Green's Theorem in the Plane

15.5 Surfaces and Area

15.6 Surface Integrals

15.7 Stokes' Theorem

15.8 The Divergence Theorem and a Unified Theory


16. First-Order Differential Equations (Online)

16.1 Solutions, Slope Fields, and Euler's Method

16.2 First-Order Linear Equations

16.3 Applications

16.4 Graphical Solutions of Autonomous Equations

16.5 Systems of Equations and Phase Planes


17. Second-Order Differential Equations (Online)

17.1 Second-Order Linear Equations

17.2 Nonhomogeneous Linear Equations

17.3 Applications

17.4 Euler Equations

17.5 Power Series Solutions


Rewards Program

Write a Review