Applied Nmr Spectroscopy for Chemists and Life Scientists

by ;
  • ISBN13:


  • ISBN10:


  • Format: Paperback
  • Copyright: 2013-12-31
  • Publisher: Wiley-VCH

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $86.00 Save up to $24.20
  • Rent Book $73.10
    Add to Cart Free Shipping


Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.


Unlike traditional NMR textbooks for chemists, this fresh look at the topic combines theory, technology and application in a wide range of fields, targeting biochemists, medicinal chemists, and structural biologists, as well as organic chemists. The text has been developed from a one-semester graduate-level course taught by the authors at the University of Zurich, and offers numerous intuitive illustrations, training exercises and plain-language explanations of complex theory.
Divided into four major parts, the first introduces the theory, providing a profound understanding of why experiments work, without a rigorous mathematical treatment of all the physico-chemical computations and deliberately shorter than in most other NMR textbooks. Part two discusses current instrumentation and practical aspects, including sample preparation, processing of raw data and the use of databases, while the third part focuses on the main application of NMR, with examples and training spectra taken from a wide range of synthetic and natural compounds. Part four introduces a selection of modern NMR applications in chemistry, biochemistry, medicinal chemistry and molecular biology, explaining the protocols used and how to interpret the results.
With its focus on practical aspects and applications, this text will prove useful long after leaving college, by helping users to select experimental methods and in setting up and running their own NMR experiments.

Author Biography

Oliver Zerbe is the head of the NMR department at the University of Zurich. He studied chemistry and obtained his PhD under the supervision of Wolfgang von Philipsborn in Zurich. After a Postdoctoral stay in the group of Kurt W?thrich at the ETH Zurich he conducted his Habilitation at the Institute of Pharmaceutical Sciences at the ETH. In 2003 he returned to his present location at the University of Zurich. His main interests are in structural biology and in the structure of membrane proteins in particular. Oliver Zerbe is the author of approx. 80 scientific publications in peer-reviewed journals and has edited one book, 'NMR in drug research'.

Table of Contents

What type of information can be obtained from NMR spectra?
From 1D to 3D NMR

Theory of the nuclear spin and the NMR experiment
The chemical shift
Scalar couplings constants
Nomenclature of Spin Systems
Proton and carbon NMR
Other nuclei
Relaxation (Dipolar Couplings) and Motion
The Nuclear Overhauser Effect (NOE)
Exchange Phenomena and Variable Temperature NMR
The Product Operator Formalism
2D NMR spectroscopy
Solid-State NMR Spectroscopy

The components of an NMR spectrometer
Processing of spectra
Sample preparation
Choice of Solvents
Determination of stereochemistry and optical purity
Hyphenation techniques (HPLC-NMR) and robotics
Shift tables for important chemical groups and solvents
Data bases

Spectroscopic Identification of Natural Products and Synthetic Compounds
Typical Features in Spectra and Assignment Strategies for Terpenes, Steroids, Peptides, Carbohydrates, Alkaloids, Nucleic Acids

Reaction control by NMR
Following enzymatic reactions by NMR
Rational drug design using NMR (SAR by NMR)
Screening techniques and molecular Interactions as studied by NMR

Rewards Program

Write a Review