did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780137055098

Brains How They Seem to Work

by
  • ISBN13:

    9780137055098

  • ISBN10:

    0137055099

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2010-04-09
  • Publisher: Ft Pr
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $39.99
We're Sorry.
No Options Available at This Time.

Summary

One of the field's leading scientists takes readers on a guided tour through the recent history of neuroscience and offers a notion as to where neuroscience may well be headed next.

Author Biography

Dale Purves is Professor of Neurobiology, Psychology and Neuroscience, and Philosophy at Duke University. He is a graduate of Yale University and Harvard Medical School. Upon completion of an internship and assistant residency at Massachusetts General Hospital, Dr. Purves was a post-doctoral fellow in the Department of Neurobiology at Harvard Medical School and subsequently in the Department of Biophysics at University College London. He joined the faculty at Washington University School of Medicine in 1973 where he was Professor of Physiology and Biophysics, and came to Duke in 1990 as the founding chair of the Department of Neurobiology in the School of Medicine. From 2003 to 2009 he was Director of Duke’s Center for Cognitive Neuroscience, and is now Director of the Neuroscience and Behavioral Disorders Program of the Duke-NUS Graduate Medical School in Singapore. He is a member of the National Academy of Sciences, the American Academy of Arts and Sciences, and the Institute of Medicine.

Table of Contents

Prefacep. xi
Neuroscience circa 1960p. 1
Neurobiology at Harvardp. 17
Biophysics at University Collegep. 37
Nerve cells versus brain systemsp. 51
Neural developmentp. 69
Exploring brain systemsp. 87
The visual system: Hubel and Wiesel reduxp. 105
Visual perceptionp. 123
Perceiving colorp. 143
The organization of perceptual qualitiesp. 161
Perceiving geometryp. 179
Perceiving motionp. 201
How brains seem to workp. 219
Suggested readingp. 235
Glossaryp. 241
Illustration creditsp. 275
Acknowledgmentsp. 281
About the authorp. 283
Indexp. 285
Table of Contents provided by Ingram. All Rights Reserved.

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Excerpts

Brains Brains PrefaceThis book is about the ongoing effort to understand how brains work. Given the way events determine what any scientist does and thinks, an account of this sort must inevitably be personal (and, to a greater or lesser degree, biased). What follows is a narrative about the ideas that have seemed to me especially pertinent to this hard problem over the last 50 years. And although this book is about brains as such, it is also about individuals who, from my perspective, have significantly influenced how neuroscientists think about brains. The ambiguity of the title is intentional.The idiosyncrasies of my own trajectory notwithstanding, the story reflects what I take to be the experience of many neuroscientists in my generation. Thomas Kuhn, the philosopher of science, famously distinguished the pursuit of what he called "normal science" from the more substantial course corrections that occur periodically. In normal science, Kuhn argued, scientists proceed by filling in details within a broadly agreed-upon scheme about how some aspect of nature works. At some point, however, the scheme begins to show flaws. When the flaws can no longer be patched over, the interested parties begin to consider other ways of looking at the problem. This seems to me an apt description of what has been happening in brain science over the last couple decades; in Kuhn's terms, this might be thought of as a period of grappling with an incipient paradigm shift. Whether this turns out to be so is for future historians of science to decide, but there is not much doubt that those of us interested in the brain and how it works have been struggling with the conventional wisdom of the mid- to late twentieth century. We are looking hard for a better conception of what brains are trying to do and how they do it.I was lucky enough to have arrived as a student at Harvard Medical School in 1960, when the first department of neurobiology in the United States was beginning to take shape. Although I had no way of knowing then, this contingent of neuroscientists, their mentors, the colleagues they interacted with, and their intellectual progeny provided much of the driving force for the rapid advance of neuroscience over this period and for many of the key ideas about the brain that are now being questioned. My interactions with these people as a neophyte physician convinced me that trying to understand what makes us tick by studying the nervous system was a better intellectual fit than pursuing clinical medicine. Like every other neuroscientist of my era, I set out learning the established facts in neuroscience, getting to know the major figures in the field, and eventually extending an understanding of the nervous system in modest ways within the accepted framework. Of course, all this is essential to getting a job, winning financial support, publishing papers, and attaining some standing in the community. But as time went by, the ideas and theories I was taught about how brains work began to seem less coherent, leading me and others to begin exploring alternatives.Although I have written the book for a general audience, it is nonetheless a serious treatment of a complex subject, and getting the gist of it entails some work. The justification for making the effort is that what neuroscientists eventually conclude about how brains work will determine how we humans understand ourselves. The questions being askedand the answers that are gradually emergingsho

Rewards Program