IMPORTANT COVID-19 UPDATES

9783527295111

Carbohydrates in Chemistry and Biology : A Comprehensive Handbook, 4 Volume Set,

by ; ;
  • ISBN13:

    9783527295111

  • ISBN10:

    3527295119

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2000-10-01
  • Publisher: VCH PUBLISHER INC

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $405.00 Save up to $60.75
  • Rent Book $344.25
    Add to Cart Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-5 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

Supplemental Materials

What is included with this book?

Summary

Carbohydrate Chemistry and Glycobiology have witnessed a rapid expansion during the last few years with the development of numerous new, imaginative and efficient syntheses which provide further insight into structures and biological interactions of glycoconjugates. Glycosylation reactions are widely used in the synthesis of pharmaceuticals and bio-active compounds. In biology and medicine oligosaccharides play a central role in immuno-stimulation, cancer or allergic responses. Glycoscience is a very instructive example of how one common topic of interest stimulates both chemistry and biology to collectively open scientific frontiers. This synergy is made visible in this work. Three leading experts in the fields of Glycochemistry and Glycobiology have invited numerous renowned authors to provide a comprehensive overview of the recent advances and findings in Glycoscience. This four-volume handbook presents an integrated and cutting-edge view, and covers all chemical aspects, such as syntheses and analysis of carbohydrates and oligosaccharides, as well as the biological role and activity of oligosaccharides and carbohydrate/protein interactions.

Table of Contents

Part I Chemistry of Saccharides
Vol. 1 Chemical Synthesis of Glycosides and Glycomimetics
List of Contributors
lv
Abbreviations Used in Volumes 1 and 2
lxiii
I Chemical Synthesis of Glycosides 1(492)
Introduction to Volumes 1 and 2
3(2)
Trichloroacetimidates
5(56)
Richard R. Schmidt
Karl-Heinz Jung
Introduction
5(1)
Methods
6(1)
O-Glycosides
7(42)
Synthesis of Oligosaccharides
7(1)
β-Glucosides, β-Galactosides, α-Rhamnosides, etc
7(1)
Aminosugar Trichloroacetimidates
8(5)
β-Mannosides
13(1)
2-Deoxyglycosides
13(1)
Miscellaneous Compounds
14(1)
Complex Oligosaccharides
14(22)
Inositol Glycosides
36(2)
Glycosylation of Sphingosine Derivatives and Mimics
38(2)
Glycosylation of Amino Acids
40(2)
Polycyclic and Macrocyclic Glycosides
42(2)
Glycosides of Phosphoric and Carboxylic Acids
44(1)
Solid-Phase Synthesis
45(4)
S-Glycosides
49(2)
N- and P-Glycosides
51(1)
C-Glycosides
51(2)
Conclusion and Outlook
53(8)
References
53(8)
Iterative Assembly of Glycals and Glycal Derivatives: The Synthesis of Glycosylated Natural Products and Complex Oligosaccharides
61(32)
Lawrence J. Williams
Robert M. Garbaccio
Samuel J. Danishefsky
Introduction
61(3)
Ciclamycin 0
64(2)
Allosamidin
66(3)
KS-502 and Rebeccamycin
69(5)
Extension to Thioethyl Donors
74(2)
Lewisy
76(6)
Globo H
82(4)
KH-1
86(4)
Concluding Remarks
90(3)
Acknowledgments
90(1)
References
90(3)
Thioglycosides
93(24)
Stefan Oscarson
Introduction
93(1)
Synthesis of Thioglycosides
94(3)
From Anomeric Acetates
94(1)
From Glycosyl Halides
95(1)
Protecting Group Manipulations in Thioglycosides
96(1)
Glycosylations with Thioglycoside Donors
97(13)
A Two-Step Procedure: Transformation of Thioglycosides into Other Types of Glycosyl Donors
97(2)
Direct Activation of Thioglycoside Donors
99(1)
Heavy Metal Salt Promoters
99(1)
Halonium, sulfonium and carbonium type promoters
100(6)
Single-Electron Activation
106(2)
Other Types of Donors With an Anomeric Sulfur
108(2)
Applications of Thioglycosides
110(7)
Block Syntheses, Orthogonal Glycosylations
110(1)
Thioglycosides as Acceptors
110(1)
Thioglycosides as Both Donors and Acceptors
111(1)
Intramolecular Glycosidations
112(1)
Solid Phase Synthesis
113(1)
References
113(4)
Glycosylation Methods: Use of Phosphites
117(18)
Zhiyuan Zhang
Chi-Huey Wong
Introduction
117(1)
Preparation of Glycosyl Phosphites
118(1)
Glycosylation using Glycosyl Phosphites
119(9)
Mechanism
119(2)
Low Temperature-Dependent Stereoselectivity
121(1)
Glycosylation of Sialyl Phosphites
122(1)
Glycosylation of C-2-Acylated Glycosyl Phosphites
123(1)
Glycosylation with C-2-O-Benzylated Glycosyl Phosphites
124(1)
Glycosylation using Glycosyl Phosphites with a Benzyl Group at C-2
124(1)
Glycosylation using Galactosyl and Fucosyl Phosphites with a Benzyl Group at C-2
125(1)
Glycosylation using other Glycosyl Phosphites with a Benzyl Group at C-2
126(1)
Glycosylation with 2-Deoxy Glycosyl Phosphites
127(1)
Other Applications of Glycosyl Phosphites
128(7)
Synthesis of CMP-NeuAc
129(1)
Synthesis of GDP-Fucose
129(2)
Formation of Glycosyl Phosphonate
131(1)
Transformation to other Types of Glycosyl Donor
131(1)
Phosphate
131(1)
Phosphorimidate
131(1)
References
132(3)
Glycosylation Methods: Use of n-Pentenyl Glycosides
135(20)
Bert Fraser-Reid
G. Anilkumar
Mark R. Gilbert
Subodh Joshi
Ralf Kraehmer
Introduction
135(1)
Fundamental Reactions
135(3)
Determination of Relative Reactivities
138(3)
n-Pentenyl Orthoesters as Glycosyl Donors
141(3)
n-Pentenyl Orthoesters as Latent C2 Esters
144(2)
Protecting Groups
146(1)
Solid-Phase Iterative Couple-Deprotect-Couple Strategy
146(9)
References
153(2)
Glycosylidene Diazirines
155(22)
Andrea Vasella
Bruno Bernet
Martin Weber
Wolfgang Wenger
Introduction
155(1)
Synthesis of Glycosylidene Diazirines
155(3)
Stability of the Glycosylidene Diazirines
158(1)
Glycosidation by Glycosylidene Diazirines
158(10)
General Aspects
158(4)
Glycosidation of Strongly Acidic Hydroxy Compounds
162(1)
Glycosidation of Phenols
162(1)
Glycosidation of Flurinated Alcohols
163(1)
Glycosylation of Weakly Acidic Hydroxy Compounds
163(1)
Glycosidation of Monovalent Alcohols
163(1)
Glycosidation of Diols and Triols
164(4)
Synthesis of Spirocyclopropanes
168(2)
Addition to Aldehydes and Ketones
170(1)
Exploratory Use of Diazirines: Formation of Glycosyl Phosphines, Stannanes, N-Sulfonylamines, Esters, Boranes, and Alanes, and of 1, 1-Difluorides
171(6)
Acknowledgments
174(1)
References
174(3)
Glycosylation Methods: Alkylations of Reducing Sugars
177(18)
Jun-ichi Tamura
Introduction
177(1)
Anomeric O-Alkylation
177(12)
Anomeric O-Alkylation of Ribofuranose with Primary Triflates: Effect of the Protecting Group at O-5 of Ribofuranose
178(1)
Anomeric O-Alkylation of Mannofuranose with Primary Triflates: The Crown Ether Effect
179(1)
Anomeric O-Alkylation of Gluco- and Galactopyranoses with Primary Triflates: High β-Selectivity as a Result of the Reactive Anomeric β-Anion
180(1)
Anomeric O-Alkylation of Acyl-Protected Nucleophiles with Primary Triflates
181(3)
Anomeric O-Alkylation of Mannopyranose with Primary Triflates: Possibility of Intramolecular Complexation of the Nucleophile
184(1)
Anomeric O-Alkylation of KDO with Primary Triflates
185(1)
Anomeric O-Alkylation of Some Protected Aldoses with Primary Triflate
186(1)
Anomeric O-Alkylation of Unprotected Aldoses with Primary Triflate, Bromides, and Cyclic Sulfates
187(1)
Anomeric O-Alkylation with Secondary Triflates and Nonaflate
188(1)
Glycosylation via the Locked Anomeric Configuration
189(3)
Synthesis of Methyl, Allyl, and Benzyl Glycosides via Stannylene Acetals
189(1)
Epimerization at C-2 by the Locked Anomeric Configuration Method
189(1)
The Locked Anomeric Configuration Method for Rhamnosyl Stannylene Acetal
190(1)
The Locked Anomeric Configuration Method for Mannosyl Stannylene Acetal: Isomerization of Acetal [25, 26]
190(1)
The Locked Anomeric Configuration Method for Stannylene Acetal with the Glucose Configuration [25, 26]
191(1)
Conclusion
192(3)
References
193(2)
Other Methods of Glycosylation
195(44)
Luigi Panza
Luigi Lay
Introduction and Summary
195(1)
Highlights
195(2)
Enol Ethers
197(12)
Endo-Enol Ethers
198(3)
Exo-Enol Ethers
201(1)
Endo-Glycals
202(2)
Exo-Glycals
204(2)
Vinyl Glycosides
206(3)
1-Hydroxy Sugars
209(7)
Acidic Activation
210(1)
Acidic Activation With Additional Reagents
211(1)
Dehydrative Glycosylation
212(1)
In the Presence of the Acceptor From the Beginning
213(1)
Mitsunobu Glycosylation
214(1)
1-O-Silyl Glycosides
215(1)
Esters and Related Derivatives
216(23)
Esters
216(5)
Sugar Carbonates and Derivatives
221(2)
Orthoesters and Oxazolines
223(6)
Phosphorus and Sulfur Derivatives
229(4)
References
233(6)
Polymer-Supported Synthesis of Oligosaccharides
239(28)
Jiri J. Krepinsky
Stephen P. Douglas
Introduction
239(1)
General Reflections
240(6)
Polymer Supports
246(1)
One-Phase Systems (Syntheses in Solution)
247(8)
Polyethyleneglycolw-monomethylether (MPEG)
248(1)
Linear Polystyrene
249(1)
Linkers
250(1)
Succinoyl Diester
250(2)
Dioxyxylyl Diether (DOX)
252(2)
Chemistry Investigations
254(1)
Two-Phase Systems (Syntheses on Solid Supports)
255(5)
Controlled Pore Glass
256(1)
Cross-Linked Polystyrene
256(1)
Polyethylene Grafts on Cross-Linked Polystyrene
256(3)
Linkers
259(1)
Dialkyl- or Diaryl-Silyl
259(1)
Thioglycoside Linkers
259(1)
Linkers Cleavable by Photolysis
260(1)
Examples of Syntheses
260(1)
Combinatorial Libraries
261(1)
Capping
262(1)
Concluding Remarks
262(5)
References
262(5)
Glycopeptide Synthesis in Solution and on the Solid Phase
267(38)
Horst Kunz
Michael Schultz
Introduction
267(7)
Which Protecting Groups are Suitable for Carbohydrates (Table 2)?
269(2)
Which Glycosylation Methods are Useful for the Formation of Glycopeptides?
271(1)
Formation of Asparagine N-Glycosides
271(1)
α-Fucosylation
271(1)
Formation of the β-Lactosamine Linkage
272(1)
α-Sialylation
272(1)
Glycopeptides Containing Particularly Sensitive Linkages
272(1)
Acid Sensitivity
273(1)
Base Sensitivity
273(1)
Synthesis of Glycopeptides in Solution
274(12)
O-Glycopeptides
274(1)
Glycopeptides Carrying N-Acetylgalactosamine (Tn-Antigen)
274(2)
Glycopeptides Carrying the T-Antigen (Gal-GalNAc)
276(2)
Glycopeptides Carrying the Sialyl T Antigen (NeuAcα2, 6[Galβ1, 3]GalNAc)
278(1)
Glycopeptides Carrying O-GlcNAc
279(1)
N-Glycopeptides
280(1)
N-Glycopeptides Carrying Natural Saccharide Side-Chains
280(5)
N-Glycopeptides with Lewis-Type Saccharide Side-Chains
285(1)
Glycopeptide Synthesis on the Solid Phase
286(14)
O-Glycopeptides
287(1)
Glycopeptides Carrying N-Acetylgalactosamine (Tn-Antigen)
287(3)
O-Glycopeptides Carrying the T Antigen (Gal-GalNAc)
290(1)
O-Glycopeptides Carrying the Sialyl Tn Antigen (NeuNAc-α2,6-GalNAc)
291(2)
O-Glycopeptides Carrying the 2,3-Sialyl T Antigen
293(1)
O-Glycopeptides Carrying O-GlcNAc Side-Chains
294(1)
O-Glycopeptides Carrying O-Linked Fucose
295(1)
O-Glycopeptides Carrying a Sialyl Lewis Antigen Structure
296(1)
N-Glycopeptides
297(1)
The Construction of N-Glycopeptide Libraries on the Solid Phase
298(1)
Sequential N-Glycopeptide Synthesis on the Solid Phase with Oligosaccharides from Natural Sources
299(1)
Conclusion
300(5)
References
300(5)
Glycolipid Synthesis
305(14)
Hideharu Ishida
Introduction
305(1)
Synthesis of Ganglio-Series Gangliosides
305(6)
Retrosynthetic Analysis of Ganglioside GD1a
305(1)
Preparation of Sialylgalactose Donor as Building Block
306(2)
Construction of Oligosaccharide
308(2)
Transformation of Oligosaccharide into Glycolipid
310(1)
Synthesis of Polysialo Ganglio-Series Gangliosides
311(4)
Retrosynthetic Analysis of GQ1b
313(1)
Preparation of Building Block
313(1)
Construction of Oligosaccharide
314(1)
Conclusion
315(4)
References
316(3)
Stereoselective Synthesis of β-Mannosides
319(26)
Vince Pozsgay
Introduction
319(1)
Chemical Methods
320(17)
Glycosylation with Mannosyl Donors
320(1)
Mannosylation using Insoluble Promoters
320(2)
The Sulfonate Approach
322(2)
Intramolecular Mannosylation
324(3)
Other Mannosyl Donor-Based Methods
327(2)
Epimerization of β-Glucopyranosides at C-2
329(1)
The Oxidation-Reduction Approach
329(1)
Direct Inversion
329(2)
The 2-Ulosyl Donor Method
331(1)
Anomeric O-alkylation
332(1)
Alkylation of 1-O-Metal Complexes
332(1)
The Stannylene Acetal Method
332(1)
Miscellaneous Methods
333(1)
Radical Inversion of the Anomeric Chirality of α-D-Mannopyranosides
333(1)
Reductive Cleavage of Cyclic Orthoesters
334(1)
De novo Syntheses
334(1)
2-Acetamido-2-deoxy-β-D-mannopyranosides
335(1)
Aryl β-D-mannopyranosides
336(1)
1-Thio-β-D-mannopyranosides
336(1)
β-D-Mannopyranosylamines
337(1)
Enzymatic Synthesis
337(1)
Conclusions
338(7)
References
338(7)
Special Problems in Glycosylation Reactions: Sialidations
345(22)
Makoto Kiso
Hideharu Ishida
Hiromi Ito
Introduction
345(1)
Sialidation by the Koenigs-Knorr Method
345(1)
Sialidation Using an Auxiliary Group at C-3
345(4)
Sialidation Using 2-Thioglycosides, Xanthates, or Phosphites of Sialic Acids in Acetonitrile
349(10)
Thioglycosides
349(7)
Xanthates and Phosphites
356(3)
Reaction Mechanism
359(1)
Further Solutions to the Problem
359(8)
Combination of C-3 Auxiliary and Sterically less Hindered Sugar Acceptors
359(1)
Combination of C-3 Auxiliary and Specific Activation of the Anomeric Center C-2
360(3)
Thioglycoside of N,N-Diacetylneuraminic Acid and Combination with C-3 Auxiliary
363(1)
References
364(3)
Special Problems in Glycosylation Reactions: 2-Deoxy Sugars
367(40)
Alain Veyrieres
Introduction
367(1)
Electrophilic Additions to Glycals: Mechanistic Aspects and Applications to the Synthesis of 2-Deoxyglycosides
368(16)
Protonation of Glycals
369(1)
Enzyme-Catalyzed Additions to Glycals
370(1)
Halogenation of Glycals
370(2)
Bromo- and Iodoalkoxylation of Glycals
372(5)
Epoxidation of Glycals
377(2)
Addition of Sulfur Based Electrophiles to Glycals
379(3)
Addition of Selenium Based Electrophiles to Glycals
382(2)
The Cycloaddition Way to Glycosyl Transfer
384(1)
Fluoroglycosylation of Glycals
385(1)
Glycosyl Donors with a C-2 Heteroatom
386(7)
2-Bromo-2-deoxyglycosyl bromides
386(1)
2-Deoxy-2-(thiophenyl)-glycosyl fluorides
387(1)
2,6-Anhydro-2-Thio-Glycosyl Donors
388(4)
1,2-Di-O-Acetyl-β-Hexopyranoses and N-Formylglucosamine Derivatives
392(1)
2-Deoxyglycosyl Donors
393(7)
2-Deoxy-Hexopyranoses
394(1)
Tert-Butyldimethylsilyl 2-Deoxyglycosides
394(1)
1-O-Acyl- and Acetimidyl-2-Deoxy-Hexopyranoses
394(1)
2-Deoxyglycosyl Bromides and Fluorides
395(1)
S-(2-Deoxyglycosyl)phosphorodithioates
396(1)
2-Deoxyglycosly Phosphates, Phosphoramidites and Phosphites
397(1)
2-Deoxy Thioglycosides
398(1)
2-Deoxyglycosyl Sulfoxides
399(1)
Other Approaches to 2-Deoxyglycosides
400(7)
Cyclization of Acyclic Sugars
401(1)
Use of Alkoxy-Substituted Anomeric Radicals
402(1)
References
403(4)
Orthogonal Strategy in Oligosaccharide Synthesis
407(20)
Osamu Kanie
Introduction
407(1)
Analysis of the Strategic Aspects of Oligosaccharide Synthesis
408(2)
General Aspects
408(1)
The Pursuit of Efficiency in Oligosaccharide Synthesis
408(2)
The Introduction of the Orthogonal Glycosylation Strategy
410(4)
Limitation of Current Concepts
410(2)
The Orthogonal Coupling Concept
412(1)
What is Orthogonality Anyway?
413(1)
Orthogonal Glycosylation and Solid-Phase Oligosaccharide Synthesis
414(1)
The Orthogonal Glycosylation Strategy
414(7)
Orthogonal Chain Elongation of Homo-Oligosaccharides: Synthesis of Chito-Oligosaccharides [19]
414(4)
Orthogonal Coupling for Hetero-Oligomer Synthesis [22]
418(2)
Application to Polymer-Supported Synthesis [26]
420(1)
Conclusions and Prospects
421(6)
Acknowledgments
424(1)
References
424(3)
Protecting Groups: Effects on Reactivity, Glycosylation Stereoselectivity, and Coupling Efficiency
427(22)
Luke G. Green
Steven V. Ley
Introduction
427(1)
Glycosidic Mechanism
428(2)
Electronic and Torsional Effects
430(1)
Influence of Protecting Group on Donor Reactivity
431(5)
Stereoselectivity
436(5)
Neighboring-Group Participation
436(1)
Reactivity Control
437(4)
Influence of the Protecting Group on the Acceptor
441(2)
Steric Effects on Glycosylation
443(1)
Conclusions
444(5)
Acknowledgments
445(1)
References
446(3)
Intramolecular Glycosidation Reactions
449(18)
Jacob Madsen
Mikael Bols
Introduction
449(1)
Reactions in which the Tether Participates in the Reaction
450(9)
Tethering to the Glycosyl Donor
450(1)
Carbon Tethers
450(4)
Silicon Tethers
454(5)
Tethering to the Leaving Group
459(1)
Reactions in which the Tether does not Participate in the Reaction
459(5)
Conclusion
464(3)
References
465(2)
Classics In Total Synthesis of Oligosaccharides and Glycoconjugates
467(26)
Jean-Maurice Mallet
Pierre Sinay
Introduction
467(1)
Syntheses of Nod factors
467(13)
Introduction
467(1)
The K. C. Nicolaou Synthesis (1992) [3]
468(3)
The J.-M. Beau Synthesis (1994) [12]
471(4)
The T. Ogawa Synthesis (1994) [16]
475(2)
The Y. Z. Hui Synthesis (1992) [18]
477(3)
Conclusion
480(1)
Synthesis of the Antithrombin-Binding Pentasaccharide Sequence in Heparin (1984) [19, 20]
480(5)
Introduction
480(1)
An Overview of the Synthesis of the Protected Pentasaccharide 73
481(2)
Synthesis of the Disaccharidic Bromide Donor 68
483(1)
Synthesis of the Disaccharidic Acceptor 69
484(1)
Synthesis of the Protected Pentasaccharide 73
484(1)
Synthesis of the Active Site of Heparin
485(1)
Total Synthesis of VIM-2 Ganglioside [31]
485(5)
Introduction
485(1)
The Total Synthesis of VIM-2---a General Strategy
486(1)
Preparation of the Key Protected Octasaccharide 87
487(3)
Epilogue
490(3)
References
491(2)
II Synthesis of Oligosaccharide Mimics 493(94)
Synthesis of C-Oligosaccharides
495(36)
Troels Skrydstrup
Boris Vauzeilles
Jean-Marie Beau
Introduction
495(1)
The Anionic Approach
496(15)
C5-Alkynyl Anions
496(4)
C1-Glycal Carbanions
500(2)
Anomeric Samarium Species
502(4)
C-Branched Carbanions
506(2)
C6-Phosphoranes
508(3)
The Radical Approach
511(7)
Intermolecular Anomeric Radical Addition
511(2)
Intramolecular Anomeric Radical Addition
513(5)
The Partial de Novo Approach
518(9)
The Cycloaddition and Rearrangement Approach
527(4)
References
528(3)
Synthesis of Oligosaccharide Mimics: S-Analogs
531(34)
Jon K. Fairweather
Hugues Driguez
Introduction
531(1)
General Synthesis
532(2)
Preparation of Thioglycoses
532(1)
1-Thioglycoses
532(1)
2-, 3-, 4-, 5-, or 6-Thioglycoses
532(1)
Selective S-Deprotection of Thioglycoses
533(1)
Glycosylation Methods
534(1)
Establishment of 1,6-Thio Linkages
534(7)
6-Thiodisaccharides
534(4)
6-Thiooligosaccharides
538(1)
Branched Thiocyclodextrins
538(3)
Establishment of 1,4-Thio Linkages
541(10)
1,4-Thiodisaccharides
541(1)
General Approaches
541(1)
SN2-Displacement on Triflates
541(5)
1,4-Thiooligosaccharides
546(1)
Conventional Approaches
546(2)
Chemoenzymatic Approaches
548(1)
Michael Addition to Unsaturated Acceptors
549(1)
Solid-Support Synthesis
550(1)
Establishment of 1,3-Thio Linkages
551(2)
1,3-Thiodisaccharides
551(1)
Conventional Methods
551(1)
Cyclic Sulfamidate and Aziridine
551(1)
1,3-Thiooligosaccharides
552(1)
Establishment of 1,2-Thio Linkages
553(4)
1,2-Thiodisaccharides
553(1)
Conventional Methods
554(1)
Other Approaches
555(2)
Establishment of 1,1-Thio Linkages
557(1)
Establishment of Mixed Thio linkages
558(1)
Thiooligosaccharides and Proteins
558(4)
The Conformation of Thiooligosaccharides in Solution
558(2)
Enzyme-Substrate Interactions
560(1)
α-Glucan-Active Enzymes
560(1)
β-Glucan-Active Enzymes
561(1)
Lectin-Ligand Interactions
562(1)
Conclusion
562(3)
Acknowledgments
562(1)
References
562(3)
Saccharide-Peptide Hybrids
565(22)
Hans Peter Wessel
Introduction
565(1)
Carbohydrate Amino Acids
566(6)
Natural Carbohydrate Amino Acids
566(1)
Synthetic Carbohydrate Amino Acids
567(5)
Amide-Linked Carbohydrate Polymers
572(2)
Amide-Linked Carbohydrate Oligomers
574(13)
Solution Synthesis
574(4)
Solid-Phase Synthesis
578(1)
Biological Activity
579(3)
Conformational Properties
582(1)
References
583(4)
Vol. 2 Enzymatic Synthesis of Glycosides and Carbohydrate-Receptor Interaction
III Enzymatic Synthesis of Glycosides 587(274)
On the Origin of Oligosaccharide Species---Glycosyltransferases in Action
589(36)
Dirk H. van den Eijnden
Introduction
589(2)
Protein N-Glycosylation: Pre-assembly of Oligosaccharide-PP-Dolichol and en bloc Transfer
591(1)
Trimming of the Polypeptide-Bound Oligosaccharide
592(1)
Folding and Quality Control
593(1)
Committed Steps in the Formation of Complex-Type Oligosaccharide Chains and Branching
594(2)
Topology of the Reaction Catalyzed by a Typical GlcNAcT
596(1)
Elongation and Termination Reactions in the trans-Golgi
596(2)
Activity with Branched Substrates
598(2)
Branch Specificity
600(1)
Essential Requirements for Activity with LacNAc
601(1)
Further Terminal Reactions in Complex-Type Oligosaccharide Synthesis
602(1)
Specific Modifications of Polylactosaminoglycans
603(3)
The Invariable Core of N-linked Oligosaccharide Chains, and Site- and Protein-Specific Processing
606(1)
Comparison of the Synthesis of Type 1 (Gal(β1-3)GlcNAcβ-R) and Type 2 (Gal(β1-4)GlcNAcβ-R) Chains
607(1)
The LacdiNAc Pathway of Complex-Type Oligosaccharide Synthesis
607(1)
Protein O-Glycosylation
608(1)
Glycosyltransferase Families
608(2)
Sialyltransferase Family
610(1)
α2-Fucosyltransferase Family
611(1)
α3/4-Fucosyltransferase Family
612(1)
α3-Galactosyl/N-Acetylgalactosaminyltransferase (Histo-Blood Group ABO) Family
613(1)
β6-N-Acetylglucosaminyltransferase Family
613(1)
Polypeptide N-Acetylgalactosaminyltransferase Family
614(1)
β4-N-Acetylgalactosaminyltransferase Family
615(1)
β4-Galactosyltransferase Family
615(2)
β3-Galactosyltransferase Family
617(1)
β3-Glucuronyltransferase Family
617(1)
Glycosyltransferases Standing Alone
617(1)
Concluding Remarks
618(7)
References
618(7)
Synthesis of Sugar Nucleotides
625(22)
Reinhold Ohrlein
Introduction
625(1)
Synthesis of Sugar Nucleotides
626(15)
Chemical Synthesis
626(1)
UDP-Activated Donors
626(3)
CMP-Activated Sugars
629(3)
GDP-Activated Donors
632(2)
Comments
634(1)
Chemo-Enzymatic Synthesis
635(1)
Uridine Diphosphate-Activated Donor Sugars
635(2)
CMP-Activated Sugars
637(2)
GDP-activated sugars
639(1)
Comments
640(1)
In situ Generation of Sugar Nucleotides
641(3)
Comments
641(3)
Outlook
644(3)
References
644(3)
Enzymatic Glycosylations with Glycosyltransferases
647(16)
Ossi Renkonen
Introduction
647(1)
In vitro Synthesis of the Core Region of O-Glycans
648(3)
Initialization of O-Glycan Biosynthesis
648(1)
Synthesis of Core 1
648(1)
Synthesis of Core 2
649(1)
Synthesis of Core 3 and Core 4
650(1)
In vitro Extension of Core 1 Glycans
650(1)
In vitro Extension of Core 2 Glycans
651(1)
Extension of Core 3 and Core 4 Glycans
651(1)
Enzymatic in vitro Synthesis of Polylactosamine Backbones
651(5)
Enzymatic Synthesis of the Primary Chains of Blood Group i-Type
652(1)
Distal Branching of i-Type Polylactosamine Backbones
653(1)
Central Branching of i-Type Polylactosamine Backbones
654(2)
β4-Galactosylation in Polylactosamine Backbones
656(1)
α3-Sialylation of N-Acetyllactosaminoglycans at the Terminal Gal
656(1)
α3-Fucosylation of Lactosamine Saccharides
657(6)
References
659(4)
Recycling of Sugar Nucleotides in Enzymatic Glycosylation
663(22)
Kathryn M. Koeller
Chi-Huey Wong
Introduction
663(1)
Glycosyltransferases of the Leloir Pathway and their Sugar Nucleotide Substrates
663(2)
Design of Regeneration Systems
665(1)
Practical Regeneration Systems
666(16)
UDP-Galactose
666(3)
Other UDP-Sugars
669(2)
CMP-NeuAc
671(5)
GDP-Sugars
676(4)
Other Carbohydrate-Based Regeneration Systems
680(2)
Conclusion
682(3)
References
683(2)
Enzymatic Glycosylations with Non-Natural Donors and Acceptors
685(20)
Xiangping Qian
Keiko Sujino
Monica M. Palcic
Introduction
685(1)
Enzymatic Glycosylations
686(14)
Galactosylations
686(1)
β1,4-Galactosyltransferase
686(2)
α1,3-Galactosyltransferase
688(2)
Fucosylations
690(1)
Human Milk α1,3/4-Fucosyltransferase
690(2)
FucT III and VI
692(1)
FucT V
692(1)
Sialylations
692(1)
α2,3-Sialyltransferase and α2,6-Sialytransferase
692(4)
N-Acetylglucosaminylation
696(1)
N-Acetylglucosaminyltransferase I, II, and III
696(2)
N-Acetylglucosaminyltransferase V
698(2)
Summary
700(5)
Acknowledgments
700(1)
References
700(5)
Solid-Phase Synthesis with Glycosyltransferases
705(18)
Claudine Auge
Christine Le Narvor
Andre Lubineau
Introduction
705(1)
General Aspects
705(2)
Enzymatic Synthesis on Insoluble Supports
707(8)
Enzymatic Synthesis of Oligosaccharides
707(1)
Use of an Amino-Functionalized Water-Compatible Polyacrylamide Gel
707(1)
Use of a Sepharose Matrix
708(3)
Use of Controlled-Pore Glass
711(1)
Enzymatic Synthesis of Glycopeptides
712(1)
Use of Controlled-Pore Glass
712(3)
Use of Polyethylene Glycol Polyacrylamide (PEGA)
715(1)
Enzymatic Synthesis of Oligosaccharides and Glycoconjugates on Soluble Supports
715(8)
Enzymatic Synthesis of Oligosaccharides
715(1)
Use of Water-Soluble Amino-Substituted Poly(vinyl alcohol)
715(2)
Use of Water-Soluble Glycopolymer Synthesized by Polymerization
717(1)
Enzymatic Synthesis of Glycolipids on Water-Soluble Polyacrylamide-Poly(N-acryloxysuccinimide) (PAN)
718(4)
References
722(1)
Glycosidase-Catalysed Oligosaccharide Synthesis
723(122)
David J. Vocadlo
Stephen G. Withers
Introduction
723(1)
Background on Glycosidases
723(1)
Basic Mechanisms
724(1)
Synthesis by the `Thermodynamic' Approach
724(4)
The Kinetic Approach
728(4)
Recent Developments and New Directions
732(113)
References
838(7)
Production of Heterologous Oligosaccharides by Recombinant Bacteria (Recombinant Oligosaccharides)
845(16)
Roberto A. Geremia
Eric Samain
Introduction
845(2)
Concept and Methodology of Heterologous (`Recombinant') Oligosaccharide Production in E. coli
847(5)
Biosynthesis of Nod Factors
847(2)
Expression Systems and Cloning Strategy
849(2)
High Cell-Density Cultivation
851(1)
Purification of Recombinant Oligosaccharides
852(1)
Examples of Recombinant Oligosaccharides
852(4)
Production of Chitin Oligosaccharides in E. coli Expressing NodC
852(1)
Production of Nod Factor Precursors
853(2)
Production of Derivatives of N-Acetyllactosamine
855(1)
Conclusions and Future Perspectives
856(5)
Production of Labeled Chitin Oligosaccharides to Study Their Interactions with Proteins
856(2)
Improvement of Oligosaccharide Production, and Metabolic Engineering
858(1)
Production of More Complex Oligosaccharides
858(1)
Acknowledgments
859(1)
References
859(2)
IV Carbohydrate-Protein Interactions 861(198)
Protein-Carbohydrate Interaction: Fundamental Considerations
863(52)
Nikki F. Burkhalter
Sarah M. Dimick
Eric J. Toone
Introduction
863(1)
Association in Aqueous Solution
864(12)
Gas Phase Non Covalent Interactions
864(1)
Dipole-Dipole Interactions
864(2)
Dipole-Induced Dipole
866(1)
Dispersive Interactions
867(1)
Specific Forces: Hydrogen Bonding and n-σ Bonding
868(1)
The Effect of Water on Intermolecular Interactions
869(1)
Coulombic Stabilization
870(1)
Hydrogen Bonding
871(1)
Dispersive Interactions
872(1)
`Hydrophobic' Interactions
872(4)
The Evaluation of Protein-Carbohydrate Binding
876(6)
Precipitin Assays
877(1)
Enzyme-Linked Lectin Assay (ELLA)
878(1)
Isothermal Titration Microcalorimetry
878(4)
The Interpretation of Calorimetric Data
882(5)
Solvation/Desolvation
882(1)
Solvation Entropy
883(1)
Translational/Rotational Entropy
884(1)
Other Contributions to Thermodynamics of Association
885(1)
Proton Transfer
885(1)
Salt Effects/Binding Site Reorganization
885(1)
van't Hoff versus Calorimetric Enthalpies
886(1)
The Thermodynamics of Protein-Carbohydrate Interaction
887(14)
The Role of Multivalency in Protein-Carbohydrate Interaction
901(14)
Phenomenology
901(4)
The Energetic Consequence of Ligand Linkage
905(1)
Enthalpic Contributions to ΔGi
906(1)
Entropic Contributions to ΔGi
907(3)
A Molecular Basis for the Cluster Glycoside Effect
910(1)
Acknowledgments
911(1)
References
911(4)
Structural Analysis of Oligosaccharides: FAB-MS, ES-MS and MALDI-MS
915(32)
Anne Dell
Howard R. Morris
Richard Easton
Stuart Haslam
Maria Panico
Mark Sutton-Smith
Andrew J. Reason
Kay-Hooi Khoo
Introduction
915(1)
Fast Atom Bombardment-Mass Spectrometry (FAB-MS)
915(2)
Matrix Assisted Laser Desorption Ionization-Time of Flight-Mass Spectrometry (MALDI-TOF-MS)
917(1)
Electrospray-Mass Spectrometry (ES-MS)
918(1)
Appearance of Mass Spectra Obtained in FAB-MS, MALDI-MS and ES-MS Experiments
919(2)
Assignment of Mass Values
921(1)
Derivatisation
921(1)
Fragmentation Pathways
922(2)
Protocols for MS Analysis
924(2)
Sample Loading for FAB-MS Analysis
924(1)
Sample Loading for NanoES-MS and MS-MS Analysis on the Q-TOF
925(1)
Sample Loading for LC-ES-MS and LC-ES-MS on the Q-TOF
925(1)
Sample Loading for MALDI-MS Analysis
925(1)
Applications of FAB-MS, MALDI-MS and ES-MS in Glycobiology
926(18)
Molecular Weight Profiling of Polysaccharides by MALDI-MS
926(1)
Analysis of Glycoproteins by LC-ES-MS and FAB-MS
927(3)
Characterization of a Novel N-Glycan by FAB-MS and FAB-MS-MS
930(3)
High Sensitivity Sequencing of a Novel Glycopeptide by Q-TOF ES-MS-MS and MALDI-MS
933(2)
FAB-MS Screening of Biological Samples for Glycan Content
935(7)
MS Analysis of Mycobacterial Glycoconjugates
942(2)
Concluding Remarks
944(3)
References
945(2)
Conformational Analysis in Solution by NMR
947(22)
S. W. Homans
Introduction
947(1)
Solution Conformations of Oligosaccharides
947(8)
The NMR Technique
947(1)
Conformational Parameters in Oligosaccharides
948(1)
Conformational Restraints
949(1)
13C Isotopic Enrichment
949(1)
Additional Conformational Restraints
950(1)
Exchangeable Protons
950(2)
Heteronuclear Overhauser Effects
952(1)
13C-13C Coupling-Constants
953(1)
Dipolar Couplings
954(1)
Experimental Restraints in Conformational Analysis
955(3)
Restraining Protocol
955(1)
Biharmonic Restraints
955(2)
Time-Dependent Restraints
957(1)
Dynamical Simulated Annealing
957(1)
Analysis of Oligosaccharide Dynamics
958(1)
Monte-Carlo Simulations
959(1)
Molecular Dynamics Simulations
959(1)
A Case Study on Neu5Acα2-3Galβ1-4Glc
959(7)
Resonance Assignments in Neu5Acα2-3Galβ1-4Glc
960(1)
ROE Connectivities
960(1)
`Global Minimum' Conformation of Neu5Acα2-3Galβ1-4Glc
961(1)
Conformational Dynamics of Neu5Acα2-3Galβ1-4Glc
962(1)
Short-range vs Long-range Restraints
963(3)
Conclusions
966(3)
References
966(3)
Oligosaccharide Conformations by Diffraction Methods
969(34)
Serge Perez
Catherine Gautier
Anne Imberty
Introduction
969(1)
General Analysis
970(3)
Crystalline Conformations of Disaccharide Moieties
973(14)
The Disaccharides
973(12)
The Analogs (S, C, N,...)
985(2)
Hydrogen Bonding in Crystalline Oligosaccharides
987(1)
Packing Features
988(2)
Selected Examples
990(2)
Crystalline Conformations of Oligosaccharides Complexed with Lectins
992(4)
Concluding Remarks
996(7)
References
998(5)
Transfer NOE Experiments for the Study of Carbohydrate-Protein Interactions
1003(22)
Thomas Peters
Introduction
1003(1)
The Transfer NOE Experiment
1004(2)
Measurement of trNOEs
1006(2)
Bioactive Conformations of Carbohydrate Ligands From trNOE Experiments
1008(1)
Spin Diffusion may Generate Misleading Distance Constrains
1009(2)
The Conformation of Sialyl Lewisx Bound to E-selection
1011(5)
Interaction of Bacterial Lipopolysaccharide Fragments with Monoclonal Antibodies
1016(3)
Conclusions and Future Directions
1019(6)
References
1021(4)
Carbohydrate-Protein Interactions: Use of the Laser Photo Chemically Induced Dynamic Nuclear Polarization(CIDNP)-NMR Technique
1025(20)
Hans-Christian Siebert
Johannes F. G. Vliegenthart
Introduction
1025(1)
The CIDNP Method
1026(1)
CIDNP-related Molecular Modelling
1027(1)
Applications
1027(2)
Hevein-like Lectins
1029(3)
Galactoside-binding Lectins from Plant and Animal Origin
1032(5)
Sialidase from Clostridium Perfringens (Wild Type and Mutants)
1037(2)
CIDNP Analysis of Glycoproteins
1039(1)
Conclusions
1040(5)
Acknowledgments
1041(1)
References
1042(3)
Biacore
1045(14)
Wolfgang Jager
Introduction
1045(3)
Real-time Analysis by Surface Plasmon Resonance
1045(2)
Information in a Sensorgram
1047(1)
Experimental Procedures
1048(6)
Immobilization of Biomolecules at the Sensor Surface
1048(2)
Surface Regeneration
1050(1)
Interaction Analysis and Controls
1051(1)
Determination of Kinetic Rate Constants
1052(1)
Affinity Determination
1053(1)
Application Areas
1054(5)
Selectin Binding to a Glycoprotein Ligand
1054(1)
Oligosaccharide Characterization
1055(1)
In situ Modification of Immobilized Carbohydrates
1056(1)
References
1056(3)
V Carbohydrate-Carbohydrate Interactions 1059(34)
Carbohydrate-Carbohydrate Interactions
1061(32)
Dorothe Spillmann
Max M. Burger
Introduction
1061(2)
From Structural Components to Cell Recognition
1063(11)
Carbohydrate-Carbohydrate Interactions as Part of Structural Components
1063(1)
Extracellular Matrix of Seaweeds---Agarose, Carrageenan and Alginate
1063(1)
Cell Walls
1064(2)
Mammalian Extracellular Matrix Components
1066(2)
Carbohydrate-Carbohydrate Interactions as Part of Recognition Keys?
1068(1)
Carbohydrate Interactions in Invertebrates---The Marine Sponge Microciona prolifera as a Model System
1069(2)
Carbohydrate Interactions in Vertebrates---Embryonal and Tumor Cells
1071(1)
Repulsive Carbohydrate-Carbohydrate Interactions
1072(2)
Molecular Aspects of Carbohydrate Interactions
1074(4)
Polyvalence to Inforce Weak Interactions
1074(1)
Arrangement of Motifs and the Possibility to Control Specificity
1075(1)
Molecular Basis of Carbohydrate-Carbohydrate Interactions
1076(2)
Experimental Approaches
1078(15)
General Considerations
1078(1)
Affinity Interactions
1078(1)
Cell Binding Studies
1079(2)
Aggregation of de novo Complexes
1081(1)
Affinity Chromatography
1082(1)
Distribution between Compartments
1082(1)
Microscopy
1083(1)
Electron Microscopy
1083(1)
Atomic Force Microscopy
1083(1)
Crystallography
1084(1)
Mass Spectrometry
1085(1)
Nuclear Magnetic Resonance
1085(1)
Molecular Modelling
1086(1)
Tools
1086(1)
Synthetic Oligosaccharides
1086(1)
Antibodies against Carbohydrate Motifs
1087(1)
Cells
1088(1)
References
1088(5)
VI Carbohydrate-Nucleic Acid Interactions 1093(2)
Carbohydrate-Nucleic Acid Interactions
1095(1)
Heinz E. Moser
Introduction
1095(1)
Carbohydrates Binding to DNA
1096(16)
Ene-Diyne Antibiotics and Antitumor Agents
1096(1)
Esperamicins
1096(4)
Calicheamicins
1100(6)
Anthracyclins
1106(5)
Pluramycins and Aureolic Acids
1111(1)
Carbohydrate Binding to RNA
1112(1)
Aminoglycosides
1113(7)
References
1120
Part II Biology of Saccharides
Vol. 3 Biosynthesis and Degradation of Glycoconjugates
Introduction to Volumes 3 and 4
v
Abbreviations Used in Volumes 3 and 4
lv
I Biosynthesis of Glycoconjugates 1(452)
Metabolism of Sugars and Sugar Nucleotides
3(16)
Hudson H. Freeze
Introduction
3(1)
Basic Principles
3(1)
Transporters Deliver Monosaccharides to Cells
4(1)
Intracellular Sources of Sugars
5(6)
Salvage
5(1)
Activation and Interconversion of Monosaccharides
6(1)
Glycogen
6(1)
Glucose
7(1)
Glucuronic acid
8(1)
Iduronic acid
8(1)
Xylose
8(1)
Mannose
8(1)
Fucose
9(1)
Galactose
10(1)
N-Acetylglucosamine
10(1)
N-Acetylgalactosamine
10(1)
Sialic acids
11(1)
Sugar Nucleotide Transporters
11(2)
Control of Sugar Nucleotide Levels
13(1)
Possible Future Directions
13(6)
References
14(5)
Nucleotide Sugar Transporters
19(18)
Rita Gerardy-Schahn
Matthias Eckhardt
Introduction
19(1)
General Considerations
20(1)
The Requirement for Nucleotide Sugar Transporters and Their Mechanism of Function: A Comprehensive Overview of the Last 20 Years
20(2)
Molecular Cloning of Nucleotide Sugar Transporters
22(3)
The Structure of Nucleotide Sugar Transporters
25(2)
The Subcelluar Distribution of Nucleotide Sugar Transporters
27(1)
Molecular Defects that Cause Inactive UDP-Galactose and CMP-Sialic Acid Transporters
28(1)
Association Between Defects in Nucleotide Sugar Transporters and Diseases
29(1)
Involvement of Nucleotide Sugar Transporters in the Regulation of Glycosylation
29(1)
Future Perspectives
30(7)
Acknowledgements
31(1)
References
32(5)
Biosynthesis of Oligosacchary Dolichol
37(8)
Sharon S. Krag
General Overview
37(1)
Oligosaccharyl Dolichol
38(1)
Key Enzymatic Steps in the Assembly Process
39(3)
Topology of the Assembly Process
42(1)
Utilization of Oligosaccharyl Dolichol
42(3)
Acknowledgment
43(1)
References
43(2)
Biochemistry and Molecular Biology of the N-Oligosaccharyl-transferase Complex
45(20)
Roland Knauer
Ludwig Lehle
Introduction
45(1)
Biochemistry of OST
46(5)
Lipid-Saccharide Donor
47(1)
Acceptor Specificity of OST
48(1)
Catalytic Mechanism of OST
49(2)
Regulation of OST Activity
51(1)
Isolation of OST Complexes from Different Sources
51(1)
Molecular Biology of OST
52(7)
WBP1/OST48
54(1)
SWP1/Ribophorin II
54(1)
OST1/Ribophorin I
55(1)
OST3/OST6
55(1)
OST5
56(1)
OST4
56(1)
OST2/DAD1
57(1)
STT3
58(1)
Structural Organization of the OST Complex
59(6)
Acknowledgments
60(1)
References
60(5)
Processing Enzymes Involved in the Deglucosylation of N-Linked Oligosaccharides of Glycoproteins: Glucosidases I and II Endomannosidase
65(16)
Robert G. Spiro
Introduction
65(1)
Glucosidase I
66(2)
Glucosidase II
68(2)
Endo-α-mannosidase
70(2)
Concerted Action of Deglucosylation Enzymes
72(2)
Mutants
74(1)
Role of Monoglucosylated N-Linked Oligosaccharides and Glucose Trimming Enzymes in Regulating Quality Control of Glycoproteins
75(2)
Effect of Glucosidase Inhibitors on Viral Proliferation
77(4)
Acknowledgments
78(1)
References
78(3)
α-Mannosidases in Asparagine-linked Oligosaccharide Processing and Catabolism
81(38)
Kelley W. Moremen
Overview
81(1)
Introduction
82(7)
Roles of N- and O-Linked Glycans and Compartmentalization of Biosynthetic and Catabolic Reactions
82(1)
Processing of Asn-Linked Oligosaccharides
82(3)
Early Trimming Events: importance for quality control glycoprotein degradation and anteriograde transport
85(2)
Glycoprotein Catabolism: multiple routes for glycoprotein breakdown
87(1)
Consequences of Genetic Defects in Oligosaccharide Biosynthesis and Catabolism
88(1)
Mannosidases in Glycorprotein Processing and Catabolism
89(17)
Classification of Mannosidases
89(4)
Class 1 Mannosidases: enzymes of the ER and Golgi
93(1)
ER mannosidase I subfamily
93(2)
Golgi mannosidase I sub-family
95(2)
Fungal secreted mannosidases
97(1)
New genes with unknown functions
98(1)
Class 2 Mannosidases: enzymes of the cytosol, ER, Golgi, and Lysosomes
98(1)
Golgi mannosidase II
99(2)
Lysosomal mannosidase
101(2)
Epididymal/sperm mannosidase
103(1)
Heterogeneous cluster of mannosidase homologs among eukarya, eubacteria, and archaea
104(2)
Conclusions and Future Prospects
106(13)
Acknowledgments
107(1)
References
107(12)
The Role of UDP-Glcyglycoprotein Glucosyltransferase as a Sensor of Glycoprotein Conformations
119(10)
Armando J. Parodi
Introduction
119(1)
General Properties
120(1)
GT Recognizes Glycoprotein Conformations
121(1)
The Primary Structure of the UDP-Glcyglycoprotein Glucosyltransferase
122(1)
The Role of Monoglucosylated Oligosaccharides in Glycoprotein Folding
123(6)
Acknowledgments
126(1)
References
127(2)
Mannosyltransferases
129(16)
Peter Orlean
Introduction
129(1)
Occurrence of Covalently-linked Mannose
130(1)
Eukaryotic Secretory Glycoproteins
130(1)
Glycophospholipids
130(1)
Eubacterial and Archaeal Mannose-containing Molecules
130(1)
C-linked Mannose
130(1)
Biochemistry of Mannosyl Transfer
131(2)
Many Linkages, Two Donors
131(1)
Donor Specificity
131(1)
Acceptor Specificity
132(1)
Structural Features of Man-T
132(1)
Man-T Families and the Pathways They Participate in
133(6)
Man-Ts of the ER [1-5]
134(1)
Alglp
134(1)
Alg2p/Alg11p
134(1)
Dpmlp
135(1)
Alg3p
135(1)
Alg9p/PIG-Bp family
135(1)
Pmt1p family
136(1)
Golgi Man-Ts and Fungal Mannan Synthesis
136(1)
Och1p family
137(1)
Mnn9p family
137(1)
Mnn10p/Mnn11p family
138(1)
Mnn1p family
138(1)
Ktr1p family
138(1)
``Missing'' Eukaryotic Man-T
138(1)
Eubacterial and Archaeal Man-T
139(1)
Coordinating Man Transfer with the Cell Cycle and Morphogenesis
139(1)
Concluding Remarks
140(5)
Acknowledgments
140(1)
References
140(5)
Branching of N-Glycans: N-Acetylglucosaminyltranferases
145(30)
Harry Schachter
Introduction
145(1)
Processing of N-Glycans within the Endomembrane Assembly Line
146(2)
General Properties of the N-Acetylglucosaminyltransferases
148(2)
Domain Structure
148(2)
Targeting to the Golgi Apparatus
150(1)
UDP-GlcNAc:Manαl-3R [GlcNAc to Manαl-3] β-1,2-N- Acetylglucosaminyltransferase I (GnT I, EC 2.4.1.101)
150(2)
UDP-GlcNAc:Manα1-6R [GlcNAc to Manα1-6] β-1,2-N-Acetylglucosaminyltransferase II (GnT II, E.C. 2.4.1.143)
152(1)
The Role of GnT I and II in Mammalian Development
153(2)
UDP-GlcNAc:R1-Manα1-6[GlcNAcβ1-2Manα1-3]Manβ1-4R2 [GlcNAc to Manβ1-4] β-1,4-N-Acetylglucosaminyltransferase III (GnT III, E.C. 2.4.1.144)
155(2)
Overexpression of GnT III Activity
156(1)
GnT III Activity and Cancer
157(1)
UDP-GlcNAc:R1 Man1-3R2 [GlcNAc to Man1-3] -1,4-N-Acetylglucosaminyltransferase IV (GnT IV, E.C. 2.4.1.145)
157(1)
UDP-GlcNAc:R1 Man1-6R2 [GlcNAc to Man1-6] -1, 6-N-Acetylglucosaminyltransferase V (GnT V, E.C.2.4.1.155)
158(3)
GnT V Activity and Cancer
159(2)
UDP-GlcNAc:R1(R2)Man1-6R3 [GlcNAc to Man1-6] -1,4-NI-Acetylglucosaminyltransferase VI (GnT VI)
161(1)
GnT VII and GnT VIII
161(14)
References
162(13)
The Galactosyltransferases
175(22)
Nancy L. Shaper
Martin Charron
Neng-Wen Lo
Jane R. Scocca
Joel H. Shaper
Introduction
175(2)
Using the Databanks to Obtain Information on the Galactosyltransferases
177(1)
Nomenclature
177(1)
The Dual Role of β4-Galactosyltransferase-I (β4GalT-I) in Oligosaccharide and Lactose Biosynthesis: The Early Days
178(7)
β4GalT-I: Isolation and Characterization of cDNA Clones
181(1)
The Murine β4GalT-1 Gene: Genomic Organization and Structure of the 5'-End
181(1)
β4GalT-I and Lactose Biosynthesis
182(1)
β4GalT-I and the Vertebrate β4GalT Gene Family
182(2)
Evolution of the β4-Galactosyltransferase Gene Family
184(1)
The Vertebrate β3Galactosyltransferase (β3GalT) Gene Family
185(3)
General Characteristics of the β3-Galactosyltransferase Gene Family Members
186(1)
β3GalT-IV: UDP-galactose:GMl β3-galactosyltransferase (GMl Synthase; GalT-3)
187(1)
Other Vertebrate β-Galactosyltransferase Activities
187(1)
UDP-Galactose:Ceramide β-Galactosyltransferase (CGalT; EC 2.4.1.45)
187(1)
The Vertebrate α3-Galactosyltransferase Gene Family
188(4)
α3-Galactosyltransferase (α3GalT: UDP-Gal:Galβ4GlcNAcα3-Galactosyltransferase; EC 2.4.1.87)
188(2)
The Blood Group B α3-Galactosyltransferase (EC 2.4.1.37)
190(1)
The Forssman Glycolipid Synthetase (EC 2.4.1.88)
191(1)
Evolution of the α3GalT Gene Family
191(1)
A UDP-Gal:Galβ3GalNAc α4Galactosyltransferase Activity
192(5)
Acknowledgments
192(1)
References
192(5)
Fucosyltransferases
197(16)
Ernesto T. A. Marques, Jr.
Introduction
197(1)
General Characteristics
198(5)
Nomenclature
198(1)
Gene Structure
199(1)
Sequence Peptide Motifs
199(1)
Specificity
199(1)
Protein Structure and Topology
200(1)
Enzymatic Reaction Mechanism
201(2)
Inhibitors
203(1)
Specific Fucosyltransferases
203(10)
GDP-Fucose: Fucl(Fuc1,2Fuc)2-fucosyltransferase
204(1)
GDP-Fucose: Gall(Fuc1,2Gal)2-fucosyltransferase
204(1)
GDP-Fucose: Gal1,4/3GlcNAc(Fuc1,3/4GlcNAc)3/4-fucosyltransferases
204(1)
Blood group Lewis: FucT III, V and VI
204(1)
Myeloid enzyme: FucT IV
205(1)
Leukocyte enzyme: FucT VII
206(1)
Neuronal enzyme: FucT IX
206(1)
GDP-Fucose: Gal1,3GlcNAc(Fuc1,3GlcNAc) bacterial (Helicobacter pylori) 3-fucosyltransferase
207(1)
GDP-Fucose: GlcNAc-N(Fuc1,6GlcNAc)6fucosyltransferases
207(1)
GDP-Fucose: O-Ser(Fuc1-0-Ser)GlcNAc polypeptide fucosyltransferases
207(1)
Unconventional Types of Fucosylation: Fucl-P-Ser and cytoplasmic Fuc1,2-Gal1,3-GlcNAc-Pro (Dictyostelium discoideum)
207(1)
Fucβl-P-Ser
207(1)
Fucα1,2-Galβ1,3-GlcNAc-Pro
208(1)
Acknowledgments
208(1)
References
208(5)
Sialyltransferases
213(14)
Joseph T. Y. Lau
Sherry A. Wuensch
Introduction
213(1)
General Features of Sialyltransferases
213(2)
Cloning and Identification Strategies for Sialyltransferases
215(1)
Sialyltransferase Classification and Nomenclature
216(1)
The α2,3-ST Family
216(1)
The α2,6-ST Family
217(1)
The α2,8-ST Family
218(9)
Regulation and Functionality of Sialyltransferases
219(2)
References
221(6)
Biochemistry of Sialic Acid Diversity
227(18)
Roland Schauer
Introduction
227(1)
Occurrence and Biosynthesis
227(2)
General Biological Functions
229(2)
N-Glycolylneuraminic Acid
231(3)
O-Acetylated Sialic Acids
234(4)
O-Methylated and O-Sulfated Sialic Acids
238(7)
Acknowledgments
239(1)
References
239(6)
Carbohydrate Sulfotransferases
245(16)
Steven D. Rosen
Annette Bistrup
Stefan Hemmerich
Introduction
245(1)
Basic Features of Sulfotransferase Reactions
245(1)
Tyrosine Sulfation
246(1)
Diversity of Carbohydrate Sulfation
246(3)
Biochemical Demonstration of Carbohydrate Sulfotransferases
249(1)
Molecular Cloning of Carbohydrate Sulfotransferases
250(2)
Primary Structures of Carbohydrate Sulfotransferases
252(9)
Acknowledgments
256(1)
References
256(5)
Novel Variant Pathways in Complex-type Oligosaccharide Synthesis
261(12)
Dirk H. van den Eijnden
Introduction
261(1)
The lacNAc Pathway of Complex-type Oligosaccharide Synthesis
261(1)
Occurrence and Biology of lacdiNAc-based Complex-type Oligosaccharides
262(1)
Biosynthesis of lacdiNAc Backbone Units
263(1)
The lacdiNAc Pathway of Complex-type Oligosaccharide Synthesis
264(2)
Other Shared Properties of β4-GalT and β4-GalNAcT
266(1)
Cloning of a snail UDP-GlcNAc:GlcNAcβ-R β4-N-acetylglucosaminyltransferase
266(1)
The Chitobio Pathway of Complex-type Oligosaccharide Synthesis
267(1)
Competition Between Pathways
267(2)
Concluding Remarks
269(4)
References
269(4)
Control of Mucin-Type O-Glycosylation: O-Glycan Occupancy is Directed by Substrate Specificities of Polypeptide GalNAc-Transferases
273(20)
Helle Hassan
Eric P. Bennett
Ulla Mandel
Michael A. Hollingsworth
Henrik Clausen
Introduction
273(1)
The Mammalian UDP-GalNAc: Polypeptide GalNAc-Transferase Gene Family
274(2)
The GalNAc-Transferase Gene Family is Evolutionarily Old
276(2)
The Kinetic Properties of GalNAc-Transferase Isoforms are Different
278(7)
Lessons from in vivo Analysis of GalNAc-transferase Substrate Specificities
279(1)
Lessons from in vitro Analysis of the Acceptor Substrate Specificities of GalNAc-transferase Isoforms
280(1)
Isoforms may have distinct acceptor substrate specificities
281(2)
Isoforms may have overlapping substrate specificities
283(1)
Isoforms may act in different order on substrates with multiple acceptor sites
283(1)
Isoforms may require prior (GalNAc) glycosylation
283(2)
Expression of the GalNAc-Transferase Genes are Differentially Regulated
285(3)
Predictive Value of in vitro O-glycosylation?
288(1)
Conclusions and Future Perspectives
288(5)
References
289(4)
Glycosyltransferase Inhibitors
293(20)
Xiangping Qian
Monica M. Palcic
Introduction
293(3)
Inhibitors of Glycosyltransferases
296(13)
Inhibitors of Galactosyltransferases
296(1)
Inhibitors of β1,4-galactosyltransferase
296(1)
Inhibitors of α1,3-galactosyltransferase
297(1)
Inhibitors of Fucosyltransferases
298(2)
Inhibitors of α1,2-fucosyltransferases
300(1)
Inhibitors of α1,3-fucosyltransferases
300(1)
Inhibitors of Sialyltransferases
301(1)
Inhibitors of α2,6-sialyltransferase
302(2)
Inhibitors of α2,3-sialytransferase
304(1)
Inhibitors of N-Acetylglucosaminyltransferases
305(1)
Inhibitors of Human Blood Group A and B Glycosyltransferases
306(3)
Summary
309(4)
Acknowledgments
309(1)
References
309(4)
Biosynthesis of the O-Glycan Chains of Mucins and Mucin Type Glycoproteins
313(16)
Inka Brockhausen
Summary
313(1)
Introduction
313(1)
Structures of O-Glycans
314(1)
Functions of Mucin Type O-Glycans
314(1)
Primary O-Glycosylation
315(1)
Synthesis of O-Glycan Core 1
315(2)
Synthesis of O-Glycan Core 2
317(2)
Synthesis of O-Glycan Core 3
319(1)
Synthesis of O-Glycan Core 4
319(1)
Synthesis of O-Glycan Cores 5-8
319(1)
Elongation and Branching Reactions
320(1)
Synthesis of Terminal Structures
321(8)
Acknowledgments
324(1)
References
324(5)
Glycosyltransferases in Glycosphingolipid Biosynthesis
329(20)
Subhash Basu
Kamal Das
Manju Basu
Introduction
329(1)
Fucosyltransferases in Glycolipid Biosynthesis
329(3)
Galactosyltransferases in Glycolipid Biosynthesis
332(2)
N-Acetylgalactosaminyltransferases in Glycolipid Biosynthesis
334(2)
N-Acetylglucosaminyltransferases in Glycolipid Biosynthesis
336(1)
Sialyltransferases in Glycolipid Biosynthesis
337(3)
Glucuronyltransferases in Glycolipid Biosynthesis
340(9)
Acknowledgments
342(1)
References
342(7)
Biosynthesis of Glycogen
349(14)
Peter J. Roach
Summary
349(1)
Introduction
350(1)
Glycogenin and the Initiation of Glycogen Synthesis
351(3)
History
351(1)
Properties
351(1)
Reaction Mechanism
352(1)
Domain Structure
352(2)
Function
354(1)
Glycogen Synthase and the Bulk Synthesis of Glycogen
354(3)
Properties
354(1)
Structure of Glycogen Synthase
355(1)
Branching Enzyme
356(1)
Intermediates in the Biosynthesis of Glycogen
357(1)
Conclusion
358(5)
Acknowledgments
359(1)
References
359(4)
Biosynthesis of Hyaluronan
363(12)
Paraskevi Heldin
Torvard C. Laurent
Introduction
363(1)
Site of Biosynthesis
364(1)
Biosynthetic Precursors
364(1)
Hyaluronan Synthases
365(2)
Microbial Enzymes
365(1)
Vertebrate Synthases
366(1)
Mechanism of Synthesis
367(3)
Chain Elongation
368(1)
Translocation
369(1)
Shedding
369(1)
Regulation of HA Synthesis
370(1)
Concluding Remarks
371(4)
Acknowledgments
372(1)
References
372(3)
Biosynthesis of Chondroitin Sulfate and Dermatan Sulfate Proteoglycans
375(20)
Geetha Sugumaran
Barbara M. Vertel
Introduction
375(4)
Proteoglycan Structure
379(4)
Proteoglycans and Their Core Proteins
379(2)
What Initiates GAG Chain Addition?
381(1)
The Linkage Region
381(1)
CS and DS Chains
382(1)
Biosynthesis of CS and DS Proteoglycans
383(8)
Biosynthesis of the Core Protein
383(1)
Origin of Sugar and Sulfate Precursors
384(1)
Addition of the Linkage Oligosaccharides
385(1)
Xylosylation
385(1)
Galactosylation
386(1)
Addition of GlcA and completion of the common tetrasaccharide linkage region
387(1)
Initiation of CS/DS chains by addition of the first GalNAc
388(1)
Formation of the CS/DS Chains
388(1)
Addition of the repeating disaccharides
388(1)
Epimerization of GlcA to IdoA to form DS
389(1)
Sulfation of GalNAc
390(1)
Sulfation of uronic acid
391(1)
Concluding Remarks/Perspectives
391(4)
Acknowledgments
392(1)
References
392(3)
Biosynthesis of Heparin and Heparan Sulfate Proteoglycans
395(12)
Lena Kjellen
Ulf Lindahl
Introduction
395(1)
The Proteoglycans: Structure, Location and Functions
396(1)
Biosynthesis of the Polysaccharide Backbone
396(1)
Outline of Polymer-Modification Reactions
397(3)
The N-Deacetylase/N-Sulfotransferases
399(1)
The C5-Epimerase
399(1)
The 2-O-Sulfotransferase
399(1)
The 6-O-Sulfotransferases
400(1)
The 3-O Sulfotransferases
400(1)
The Products, Heparin and Heparan Sulfate
400(1)
Interactions with Proteins
401(1)
Regulation of HS Biosynthesis
402(5)
References
403(4)
Biosynthesis of Proteoglycans with Keratan Sulfates
407(10)
James L. Funderburgh
Introduction: Keratan Sulfate Renaissance
407(1)
Keratan Sulfate Structure and Distribution
407(3)
Corneal KS
408(1)
Non-corneal KSI
409(1)
KSII
409(1)
KSIII
410(1)
Keratan Sulfate Proteoglycans
410(2)
SLRPs
410(1)
Aggrecan
411(1)
Cell-Associated KS
411(1)
Brain
412(1)
Enzymatic Reactions of KS Biosynthesis
412(1)
Metabolic Control of KS Synthesis
413(4)
Acknowledgments
414(1)
References
414(3)
The Biosynthesis of GPI Anchors
417(18)
Yasu S. Morita
Alvaro Acosta-Serrano
Paul T. England
Introduction
417(1)
Structure of GPI Anchors
417(2)
Glycan Core Modifications
417(2)
Variations in Anchor Lipid Structure
419(1)
GPI Precursor Synthesis
419(6)
GlcNAc-Pl Synthesis
420(1)
GlcNAc-Pl Deacetylation
421(1)
Inositol Acylation
421(1)
GPI Mannosylation
422(1)
Transfer of EtN-P
423(1)
Lipid Remodeling
423(1)
Addition of Carbohydrate Side Chains
424(1)
Topology of Biosynthetic Pathways
424(1)
Attachment of the GPI Precursor to a Protein
425(1)
Basic Features
425(1)
Protein Machinery for GPI Addition
426(1)
Signal Sequence for GPI Addition
426(1)
Evolution of GPI Biosynthesis
426(1)
Future Studies
427(8)
Acknowledgments
427(1)
References
427(8)
Escherichia coli Lipid A: A Potent Activator of Innate Immunity
435(18)
Teresa A. Garrett
Christian R. H. Raetz
Introduction
435(1)
Structure of Lipopolysaccharide
435(2)
Lipid A Biosynthesis in E. coli
437(7)
Acylation of UDP-GlcNAc
439(1)
Disaccharide Formation
440(1)
Phosphorylation by the Lipid A 4' Kinase
440(1)
Kdo Addition and the Late Acyltransferases
441(1)
Other Acyltransferases
442(1)
Transport of Lipid A and the Role of MsbA
442(2)
Lipid A Activation of Signal Transduction in Animal Cells
444(3)
Summary
447(6)
Acknowledgments
447(1)
References
447(6)
II Glycosidases 453(80)
Lysosomal Degradation of Glycolipids
455(18)
Thomas Kolter
Konrad Sandhoff
Summary
455(1)
Introduction
455(1)
Mechanisms of Lysosomal Glycolipid Degradation
456(6)
Glycosidases
456(1)
Topology of Endocytosis and Lysosomal Glycolipid Degradation
457(1)
Sphingolipid Activator Proteins
458(1)
The GM2-activator and its role in lysosomal digestion
459(1)
SAP-A to SAP-D
460(1)
Lateral Pressure
460(1)
Lipid Composition
461(1)
Membrane Curvature
462(1)
Degradation of Selected Lipids
462(4)
Ganglioside GM2
462(2)
Lactosylceramide
464(1)
Glucosylceramide
464(1)
Ceramide
465(1)
Sphingomyelin
465(1)
Sulfatide
465(1)
Galactosylceramide
466(1)
Pathobiochemistry
466(4)
Animal Models for Sphingolipidoses
467(2)
Therapy
469(1)
Future Directions
470(3)
References
470(3)
Lysosomal Degradation of Glycoproteins
473(12)
Nathan N. Aronson, Jr.
Summary
473(1)
Introduction
473(1)
Roles of Lysosomes
474(1)
Lysosomal Degradation of N-Linked Glycoproteins
475(2)
General Features
475(1)
Carbohydrate Digestion
476(1)
Protein and Linkage Hydrolysis
476(1)
Formation of Thyroid Hormone via Lysosomal Degradation of Thyroglobulin
477(2)
Synthesis of Thyroid Hormone
477(1)
Carbohydrate Degradation
478(1)
Proteolysis
479(1)
Degradation of Free Polymannose-Type Oligosaccharides Derived from N-Linked Glycoproteins During Biosynthesis
479(6)
References
481(4)
Sialidases
485(12)
Garry Taylor
Susan Crennell
Carl Thompson
Marina Chuenkova
Abstract
485(1)
Introduction
485(1)
Influenza Virus Neuraminidase
486(1)
Paramyxovirus Hemagglutinin-Neuraminidase (HN)
487(1)
Non-Viral Sialidases
487(3)
Small Sialidases
490(1)
Large Sialidases
491(1)
T. cruzi Trans-Sialidase (TS)
491(2)
Conclusion
493(4)
Acknowledgments
494(1)
References
494(3)
Microbial Glycosidases
497(16)
Kenji Yamamoto
Su-Chen Li
Yu-Teh Li
Exo-Glycosidases
497(8)
α-Glucosidase
497(1)
β-Glucosidase
498(1)
α-Galactosidase
498(1)
β-Galactosidase
499(1)
α-Mannosidase
500(1)
β-Mannosidase
501(1)
β-N-Acetylhexosaminidase
501(1)
α-N-Acetylgalactosaminidase
501(1)
α-L-Fucosidase
502(1)
β-D-Fucosidase
503(1)
Sialidase
503(1)
KDNase
504(1)
α-L-Rhamnosidase
504(1)
β-Xylosidase
505(1)
Endo-Glycosidases
505(8)
Endo-β-N-acetylglucosaminidase
505(1)
Peptide-N-glycanase F
506(1)
Endo-α-N-acetylgalactosaminidase
506(1)
Endo-β-galactosidase
507(1)
Endoglycoceramidase
507(1)
References
508(5)
Glycoprotein Processing Inhibitors
513(20)
Magid Osser
Alan D. Elbein
Introduction
513(2)
Structural Classification
515(1)
Distribution of Glycosidase Inhibitors in the Plant Kingdom
515(1)
Isolation and Structural Determination
516(1)
Glycosidase Inhibitory Activity
517(1)
Structure-Activity Relationships
518(1)
N-Linked Oligosaccharide Processing
519(3)
Inhibitors of N-Linked Oligosaccharide Processing
522(6)
Glucosidase Inhibitors
522(3)
Mannosidase Inhibitors
525(3)
Summary and Future Prospects
528(5)
References
529(4)
Vol. 4 Lectins and Saccharides Biology
III Lectins 533(116)
Plant Lectins
535(14)
Marilynn E. Etzler
Summary
535(1)
Introduction
535(1)
Carbohydrate Specificity
536(3)
Other Activities
539(1)
Structure
540(3)
Biological Roles
543(6)
Acknowledgments
546(1)
References
547(2)
Interactions of Oligosaccharides and Glycopeptides with Hepatic Carbohydrate Receptors
549(14)
Yuan C. Lee
Reiko T. Lee
Summary
549(1)
Introduction
550(1)
Molecular Characteristics of Hepatic Lectins
551(1)
Cellular Aspects of HL
552(1)
Binding Specificity
553(4)
Photoaffinity Labeling
557(1)
Subunit Organization on Rat Hepatocyte Surface
558(1)
Applications
559(4)
References
560(3)
P-Type Lectins and Lysosomal Enzyme Trafficking
563(16)
Patricia G. Marron-Terada
Nancy M. Dahms
Introduction
563(1)
Intracellular Trafficking of the MPRs
564(2)
Primary Structure and Biosynthesis of the MPRs
566(3)
CI-MPR
566(1)
CD-MPR
567(2)
Lysosomal Enzyme Recognition by the MPRs
569(2)
Structural Determinants of Man-6-P Recognition
571(3)
Expression of Mutant Forms of the MPRs
571(1)
Crystal Structure of the CD-MPR
572(2)
Conclusions
574(5)
Acknowledgments
574(1)
References
575(4)
The Siglec Family of I-Type Lectins
579(18)
Paul R. Crocker
Soerge Kelm
Introduction
579(1)
The Immunoglobulin Superfamily and Carbohydrate Recognition
579(1)
Siglecs as a Family of Sialic Acid Binding Proteins
580(1)
Biology of Siglecs
581(2)
Sialic Acids in Cellular Recognition
583(1)
Mode of Carbohydrate Recognition by Siglecs
584(4)
Importance of Multivalent Binding
588(1)
Sialic Acid Recognition by the Immunoglobulin Fold-Evolutionary Considerations
588(1)
Role of cis Interactions in Modulating Adhesion to Other Cells in trans
589(1)
Sialoadhesin as a Macrophage Adhesion Molecule
590(1)
Signalling Versus Adhesion Mediated by Siglecs
591(1)
Conclusions
592(5)
Acknowledgments
592(1)
References
592(5)
C-Type Lectins and Collectins
597(16)
Russell Wallis
Summary
597(1)
Structure and Function of C-Type Animal Lectins
598(3)
The Carbohydrate-Recognition Domain
599(1)
Ligand Binding
600(1)
Mannose-Binding Protein and Collectins
601(8)
Domain Organization
601(2)
MBPs as Prototype Collectins
603(1)
Ligand Binding by Serum MBP
603(1)
MBP and Innate Immunity
604(3)
Liver MBP
607(1)
Pulmonary Surfactant Proteins
608(1)
Conglutinin and CL-43
608(1)
Conclusions
609(4)
Acknowledgments
609(1)
References
609(4)
Selectins
613(12)
Rodger P. McEver
Introduction
613(1)
Structure of Selectins
613(1)
Selectin Ligands
614(5)
Requirements for Selectins to Mediate Tethering and Rolling of Leukocytes under Hydrodynamic Flow
619(2)
Functions of Selectins and their Ligands in vivo
621(1)
Conclusions
621(4)
References
622(3)
Galectins
625(24)
Douglas N.W. Cooper
Samuel H. Barondes
Introduction
625(1)
Galectin Structure
626(5)
Novel Candidate Galectins
631(4)
Unorthodox Subcellular Targeting
635(2)
Regulation of Galectin Expression
637(2)
Galectin Binding Specificity and Identified Ligands
639(1)
Physiological Functions
640(2)
Summary
642(7)
References
642(7)
IV Saccharide Biology 649(2)
Structures and Functions of Nuclear and Cytoplasmic Glycoproteins
651(1)
Robert S. Haltiwanger
Introduction
651(1)
O-Linked N-Acetylglucosamine (O-GlcNAc)
652(1)
O-GlcNAc Appears to be a Regulatory Modification much like Phosphorylation
653(2)
Modulation of Protein Stability and Function by O-GlcNAc
655(3)
Other Forms of Nuclear and Cytoplasmic Glycosylation
658(1)
Unique Cytoplasmic Forms of Glycosylation
658(2)
Conventional Forms of Glycosylation in the Nucleus and Cytoplasm
660(1)
Nuclear and Cytoplasmic Lectins
661(1)
Conclusions
662(1)
Acknowledgments
662(1)
References
662(7)
Structure and Functions of Mucins
669(1)
Joyce Taylor-Papadimitriou
Joy M. Burchell
Classification of Mucins
669(1)
The Epithelial Mucins
670(1)
Mucin Type O-Glycosylation Pathways
670(1)
Initiation of O-Glycosylation
671(1)
Chain Extension
671(1)
Chain Termination
671(1)
Expression of Epithelial Mucins
672(1)
The Complex Gel-Forming Mucins: Processing and Function
672(2)
Epithelial Membrane Mucins
674(1)
Studies Related to the MUCI Mucin
675(1)
Changes in the Patterns of O-Glycosylation of MUCI in Breast Cancer
675(1)
Differences in sites of glycosylation
675(1)
Changes in the composition of O-glycans added to MUCI in Breast Cancer
676(1)
Correlation in changes of Glycosyltransferase activities with changes in O-glycan structure in Breast Cancer
676(1)
Changes in Glycosylation of MUCI in other Cancers
677(1)
Effects of MUCI Expression on the Behavioral Properties of Cancer Cells
677(1)
Effects on cell interactions and tumourogenicity
677(1)
MUCI Expression and Immune Responses
678(1)
Active Specific Immunotherapy Based on MUCI
679(1)
Animal models
679(1)
Clinical studies
680(1)
Comments
681(1)
References
681(4)
Biological Roles of Hyaluronan
685(1)
Bryan P. Toole
Introduction
685(1)
Hyaluronan is a Biopolymer with Unusual Physical Properties
685(2)
Hyaluronan Binds to Several Types of Proteins (Hyaladherins)
687(2)
General Properties of Hyaladherins
687(1)
Structural Hyaluronan-Binding Proteins
688(1)
Hyaluronan Receptors
688(1)
Intracellular Hyaluronan-Binding Proteins
689(1)
Inter-α-Trypsin Inhibitor
689(1)
Hyaluronan-Dependent Pericellular Matrices Assemble Around Several Cell Types
690(1)
Hyaluronan-Dependent Cellular ``Coats''
690(1)
Assembly of Chondrocyte Pericellular Matrix
691(1)
Tethering of Cell Surface Hyaluronan to Hyaluronan Synthase
691(2)
Hyaluronan Influences Cell Behavior During Morphogenesis and Tissue Remodeling
693(1)
Migratory and Proliferating Cells are Surrounded by Hyaluronan-enriched Matrices
693(1)
Hydrated Pericellular Milieux Provide Cellular Pathways
693(1)
Receptors Mediate Effects of Hyaluronan
693(1)
Hyaluronan-Cell Interactions in Limb Development
694(1)
Hyaluronan-Cell Interactions in Other Physiological and Developmental Systems
695(1)
Hyaluronan Plays a Crucial Role in Cancer
696(1)
References
696(5)
Biological Roles of Heparan Sulfate Proteoglycans
701(1)
Ofer Reizes
Pyong Woo Park
Merton Bernfield
Introduction
701(1)
Heparan Sulfate Biosynthesis
701(1)
Functions of Heparan Sulfate
702(1)
Proteoglycans
703(1)
Intracellular Proteoglycans
703(1)
Serglycin and Heparin
704(1)
Cell Surface Heparan Sulfate Proteoglycans
705(1)
Syndecans
705(1)
Glypicans
706(1)
Part-time Cell Surface Heparan Sulfate Proteoglycans
707(1)
Betaglycan
707(1)
CD44
708(1)
Functions of Cell Surface Heparan Sulfate Proteoglycans
708(1)
Ligand Receptors
708(1)
Ligand Coreceptors
709(1)
Shed Effectors
709(1)
Extracellular Matrix Heparan Sulfate Proteoglycans and Their Functions
710(1)
Perlecan
710(2)
Agrin
712(1)
Other Extracellular HSPGs
713(1)
Conclusions
713(1)
References
713(4)
Biological Roles of Keratan Sulfate Proteoglycans
717(1)
Gary W. Conrad
Introduction
717(1)
Corneal Transparency
718(1)
Nerve Growth Cone Guidance
719(2)
Cell Adhesion
721(1)
Other Possible Roles of KSPGs
722(1)
Acknowledgments
723(1)
References
723(6)
Developmental and Aging Changes of Chondroitin/Dermatan Sulfate Proteoglycans
729(1)
J. Michael Sorrell
David A. Carrino
Arnold I. Caplan
Proteoglycans
729(1)
Glycosaminoglycans
729(2)
Core Proteins
731(1)
Hyalectans
731(2)
Small Leucine-rich Proteoglycans
733(2)
Chondrotin/Dermatan Sulfate Proteoglycans in Development and Aging
735(1)
Core Proteins in Development, Aging, and Pathologies
735(1)
Chondroitin/Dermatan Sulfate Glycosaminoglycan Chains in Development, Aging, and Pathologies
736(4)
Summary
740(1)
References
740(3)
Proteoglycans and Hyaluronan in Vascular Disease
743(1)
Thomas N. Wight
Introduction
743(1)
Proteoglycans and Hyaluronan
744(1)
Versican (CSPGs)
745(2)
Hyaluronan
747(1)
Decorin/Biglycan (DSPGs)
748(1)
Perlecan/Syndecans (HSPGs)
749(2)
Summary
750(1)
Acknowledgments
750(1)
References
750(7)
Functions of Glycosyl Phosphatidylinositols
757(1)
Nikola A. Baumann
Anant K. Menon
David M. Rancour
Introduction
757(1)
Parasite Coats: Extreme GPI-Anchoring
758(1)
Yeast GPIs and the Cell Wall
758(1)
Paroxysmal Nocturnal Hemoglobinuria (PNH): Disease and Defects in GPI-Anchoring of Proteins
759(1)
GPIs in the Secretory and Endocytic Pathways
760(2)
Organization of GPI Proteins in the Plasma Membrane
762(2)
Association of GPI-Anchored Proteins with Caveolae
764(1)
Detergent Insolubility and Signaling via GPI-Proteins
764(1)
Membrane Release of GPI-Anchored Proteins
765(1)
GPIs as Second Messenger Signaling Molecules
766(1)
Summary
767(1)
Acknowledgments
767(1)
References
768(3)
Glycosphingolipid Microdomains in Signal Transduction, Cancer, and Development
771(1)
Sen-itiroh Hakomori
Kazuko Handa
Clustered GSLs as Functional Units
771(1)
GSL Clusters, Associated with Signal Transducers, are Functional Units Separable from Caveolae
772(1)
Cell Adhesion Coupled with Signal Transduction Initiated by GSL Microdomain: Concept of Glycosignaling Domain (GSD)
773(1)
Role of GSLs in Control of Growth Factor and Hormone Receptors: Possible Relationship with GSL Microdomain
774(2)
Functional Role of Developmentally-Regulated and Tumor-Associated GSLs
776(2)
References
778(5)
The Primary Cell Walls of Higher Plants
783(1)
Jocelyn K. C. Rose
Malcolm A. O'Neill
Peter Albersheim
Alan Darvill
Introduction (What is a Cell Wall?)
783(1)
Purification of Cell Walls and Isolation of Wall Components
784(2)
The Structural Components of the Primary Cell Wall
786(1)
Cell Walls and the Diversity of Flowering Plants
786(1)
The Structural Components of the Primary Wall
786(5)
Biosynthesis of Wall Components
791(2)
Organization of the Plant Primary Cell Wall
793(1)
Cellulose-Xyloglucan Interactions
793(1)
Interactions Between Pectins and Other Cell Wall Components
794(2)
Glycoproteins in the Cell Wall
796(1)
Heterogeneity in the Primary Cell Wall
797(1)
Function and Metabolism of Plant Primary Cell Walls
798(1)
Mechanical Support
798(1)
Regulation of Cell Expansion
798(2)
Morphogenesis and Differentiation
800(1)
Plant Cell Wall Oligosaccharides in Defense and Cell Signalling
801(2)
Intercellular Transport and Storage
803(1)
Biotechnology and Future Directions in the Commercial Applications of Plant Primary Cell Walls
803(1)
Acknowledgments
804(1)
References
804(5)
Glycolipids and Bacterial Pathogenesis
809(1)
Clifford A. Lingwood
Introduction
809(1)
Modulation of Glycolipid Receptor Function
810(2)
Stress Response and Glycolipid Receptors
812(1)
Subcellular Gb3 Trafficking
813(2)
Model for Lipid Sorting Based on Chain Length
815(1)
Glycosphingolipids and Signal Transduction
815(2)
Acknowledgments
817(1)
References
817(4)
Glycobiology of Viruses
821(1)
Hildegard Geyer
Rudolf Geyer
Summary
821(1)
General Aspects
821(4)
Functions of Viral Surface Glycoproteins
825(1)
Biosynthesis
826(1)
Function of Carbohydrate Substituents
826(1)
Oligosaccharide Diversity
827(3)
Examples
830(1)
Friend Murine Leukemia Virus Complex
830(2)
Marburg Virus (MBGV)
832(1)
Hepatitis B Virus (HBV)
833(3)
Acknowledgments
836(1)
References
836(3)
The Glycobiology of Influenza Viruses
839(1)
Stephen J. Stray
Gillian M. Air
Introduction
839(1)
Receptor Binding Proteins: Influenza A HAg and Influenza C HEF
840(3)
Structure of Receptor Binding Domain and Mechanism of Sialic Acid Recognition
843(1)
HEF Esterase Domain and Mechanism of Cleavage
844(1)
Influenza NAm (types A and B)
844(1)
Mechanism of Sialic Acid Cleavage
845(2)
Function of Viral Receptor Destroying Enzymes
847(1)
Acknowledgments
847(1)
References
848(3)
Glycobiology of Aids
851(1)
Ten Feizi
Abstract
851(1)
Introduction
851(2)
The Repertoire of N-Glycans on the Envelope Glycoprotein of HIV of Human Immunodeficiency Virus Produced in Different Cell Types
853(1)
Evidence for the Occurrence of O-Glycans on the Envelope Glycoproteins of HIV-1 Produced in Certain Cell Lines
854(1)
Oligosaccharides of gp 120 and gp 41 at N-Glycosylation Sites and Their Possible Influence on Viral Infectivity
855(1)
gp 120 Glycosylation Can Influence Antigenicity and Immunogenicity
856(1)
Saccharides Recognized by Carbohydrate-binding Proteins and Antibodies as Potential Neutralization Epitopes on the Envelope Glycoprotein of HIV-1
857(1)
Lectins and Antibodies with Mannose-related specificities
857(1)
Antibodies to O-Glycan Sequences
858(1)
Antibodies to Blood Group A
858(1)
Xeno-antibodies to Galα1-3Gal Sequence
859(1)
Potential Medical Relevance
859(1)
Does Viral Oligosaccharide Display Influence Tissue Tropism?
860(2)
Concluding Remarks
862(1)
Acknowledgment
862(1)
References
863(4)
Glycobiology of Protozoan and Helminthic Parasites
867(1)
Richard D. Cummings
A. Kwame Nyame
Introduction
867(1)
General Classification of Parasites
867(1)
The Major Protozoan Parasites
868(1)
Malaria
868(5)
Trypanosomiasis
873(1)
Leishmaniasis
874(4)
Other Protozoan Parasites
878(1)
Entamoeba histolytica
878(1)
Acanthamoeba
878(1)
Giardia lamblia
878(1)
Cryotosporidium parvum
878(1)
Sarcocystis spp
879(1)
Toxoplasma gondii
879(1)
Pneumocystis carinii
879(1)
Helminthic Parasites
879(4)
Carbohydrate-Binding Proteins in Parasitic Helminths
883(1)
Unusual Glycans in Other Helminthic Parasites
883(2)
Future Directions
885(1)
Acknowledgments
885(1)
References
886(9)
The Involvement of the Oligoasaccharide Chains of Glycoproteins in Gamete Interactions at Fertilization
895(1)
Noritaka Hirohashi
William J. Lennarz
Introduction
895(1)
Advantages of Marine Invertebrates as an Experimental System
895(1)
Induction of the Acrosome Reaction
896(1)
Studies in Sea Urchins
896(3)
Studies in Starfish
899(1)
Sperm-Egg Coat Binding
899(1)
Studies in Mammals
900(1)
Studies in Frog
900(2)
Studies in Ascidians
902(2)
Studies in Sea Urchins
904(2)
Carbohydrate as a Species-Specific Determinant
906(1)
References
907(2)
Glycosylation and Development
909(1)
Michele Aubery
Christian Derappe
Summary
909(2)
Introduction
911(1)
Lectins as Tools to Analyze Changes in Cell-surface Glycoconjugates During Development
911(1)
Cell-adhesion Molecules
912(1)
Neural Cell-adhesion Molecule
912(2)
The Adhesion Molecule L1
914(1)
Glycosyltransferases
914(1)
Altered Expression of Endogenous Lectins During Development
915(1)
Galectins
915(2)
Selectins
917(1)
Other Endogenous Lectins
917(1)
Conclusion
918(1)
References
918(5)
Protein Glycosylation and Cancer
923(1)
James W. Dennis
Maria Granovsky
Introduction
923(1)
Protein Glycosylation Generates Molecular Diversity
923(3)
Cancer Initiation and Progression
926(1)
Tumor Cell Proliferation
927(3)
Cell Migration
930(3)
Sialylation and Metastasis
933(1)
Endogenous Lectins and Tumor Cell Adhesion
934(1)
Carbohydrate Processing Inhibitors as Anti-Cancer Agents
935(1)
Other Considerations
936(1)
Acknowledgments
937(1)
References
937(8)
Lysosomal Storage Diseases
945(1)
Nathan N. Aronson, Jr.
Summary
945(1)
Introduction
946(1)
Animal Models
947(1)
Mucopolysaccharidoses
947(2)
Cathepsin K Deficiency and Pycnodysostosis
949(2)
Mouse Models for Tay-Sachs and Sandhoff Diseases
951(2)
Impact of Lysosomal Diseases and Their Study
953(1)
References
954(5)
Genetic Diseases of Glycosylation
959(1)
Tomoya Akama
Michiko N. Fukuda
Introduction
959(1)
CDGS
959(1)
CDGS Type I
959(2)
CDGS Type II
961(2)
HEMPAS
963(1)
References
964(3)
Glycobiology of Helicobacter pylori and Gastric Disease
967(1)
Karl-Anders Karlsson
Introduction
967(1)
The Bacterial Surface and Molecular Mimicry
968(1)
Host Surfaces and H. pylori Recognition of Glycoconjugates: Unique Complexity
968(1)
Sialic Acid
969(1)
Sulfatide
970(1)
Heparan Sulfate
970(1)
Fucose-Dependent Binding (H-1 and Lewis b)
971(1)
Gangliotetraosylceramide
971(1)
Lactosylceramide
972(1)
The Meaning of Multiple Binding Specificities
972(1)
Aspects for the Future
973(1)
References
973(4)
Immunoglobulin G Glycosylation and Galactosyltransferase Changes in Rheumatoid Arthritis
977(1)
John S. Axford
Introduction
977(1)
Oligosaccharide Synthesis
977(1)
Galactosyltransferase
978(1)
Immunoglobulin G
978(1)
Rheumatoid Arthritis
979(1)
Quantification of IgG sugars in RAr
979(1)
RAr and Pregnancy
980(1)
Galactosylation of IgG
980(1)
α3-Fucosylation of αl-Acid Glycoprotein
981(1)
Agalactosyl-IgG and Rheumatoid Factor Binding
982(1)
Tissue-specific Galactosyltransferase Abnormalities in an Experimental Model of Rheumatoid Arthritis
983(2)
Glycosylation Homeostasis within RAr Lymphocytes is Abnormal
985(1)
Are the Rheumatoid Arthritis Associated Glycosylation Abnormalities Unique?
986(4)
Sugar Printing Rheumatic Disease is Possible
990(2)
Rapid Profiling of IgG N-Glycans by Fluorophore-coupled Oligosaccharide Electrophoresis has the Potential of Differentiating Rheumatic Diseases
992(1)
In What Way could GTase Enzymatic Control be Abnormal?
992(1)
Conclusion
993(1)
References
994(3)
Calnexin, Calreticulin and Glycoprotein Folding Within the Endoplasmic Reticulum
997(1)
Michael R. Leach
David B. Williams
Structure and Properties of Calnexin and Calreticulin
997(3)
Biological Functions
1000(2)
Mechanism of Action
1002(3)
Functional Relationship Between Calnexin and Calreticulin
1005(2)
Relationship with other ER Chaperones and Folding Catalysts
1007(1)
References
1008(5)
Glycobiology of The Nervous System
1013(1)
Ronald L. Schnaar
Introduction
1013(1)
Nervous System Glycoconjugates---Overview
1013(1)
Nervous System Glycolipids
1014(1)
Galactosylceramides
1014(2)
Gangliosides and Related Anionic Glycosphingolipids
1016(3)
Nervous System Glycoproteins
1019(1)
Polysialic Acid
1020(1)
The HNK-1 Determinant
1020(1)
Nervous System Glycosaminoglycans
1020(1)
Lectins in the Brain
1021(1)
Myelin-Associated Glycoprotein
1021(1)
Other Nervous System Lectins
1022(1)
Concluding Remarks
1023(1)
References
1023(6)
Glycobiology of the Immune System
1029(1)
Elizabeth F. Hounsell
Infection and Pathogenesis
1029(4)
Control of the Immune Response
1033(1)
Bacterial and Tumor Antigens, Mucins and Mucin-like Molecules
1034(2)
Immunoglobulins and Pathology
1036(2)
References
1038(5)
Metabolic Engineering Glycosylation: Biotechnology's Challenge to the Glycobiologist in the Next Millennium
1043(1)
Thomas G. Warner
Introduction
1043(1)
Recent Developments in Carbohydrate Biosynthesis
1044(1)
Optimizing Sialylation of Recombinant Proteins by Metabolic Engineering Sialic Acid Biosynthesis
1044(5)
Optimizing Galactosylation of Recombinant Proteins by Metabolically Engineering Galactose Biosynthesis
1049(3)
Mannose Biosynthesis and Mannosylation of Recombinant Proteins
1052(1)
Glycosylation Engineering Alternat Expression Hosts For Recombinant Protein Therapeutic Production
1053(1)
Engineering Glycosylation of Recombinant Proteins Expressed in Baculovirus-Insect Cells
1053(1)
Genes needed to supplement glycosylation of recombinant proteins in insect cells
1054(1)
Deleterious genes may need to be deleted or inhibited to enhance recombinant glycoprotein biosynthesis in insect cells
1054(2)
Engineering Glycosylation of Recombinant Proteins Expressed in Plants
1056(2)
Genetic addition and supplementation needed to improve plant recombinant protein glycosylation
1058(1)
Inhibition or deletion of plant glycosylation genes
1059(1)
Summary
1059(1)
Acknowledgments
1060(1)
References
1060(1)
Index I1

Rewards Program

Write a Review