Data Analytics with Spark Using Python

  • ISBN13:


  • ISBN10:


  • Edition: 1st
  • Format: Paperback
  • Copyright: 2018-06-06
  • Publisher: Addison-Wesley Professional

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $44.99 Save up to $11.25
  • Rent Book $33.74
    Add to Cart Free Shipping


Supplemental Materials

What is included with this book?


Solve Data Analytics Problems with Spark, PySpark, and Related Open Source Tools

Spark is at the heart of today’s Big Data revolution, helping data professionals supercharge efficiency and performance in a wide range of data processing and analytics tasks. In this guide, Big Data expert Jeffrey Aven covers all you need to know to leverage Spark, together with its extensions, subprojects, and wider ecosystem.

Aven combines a language-agnostic introduction to foundational Spark concepts with extensive programming examples utilizing the popular and intuitive PySpark development environment. This guide’s focus on Python makes it widely accessible to large audiences of data professionals, analysts, and developers—even those with little Hadoop or Spark experience.

Aven’s broad coverage ranges from basic to advanced Spark programming, and Spark SQL to machine learning. You’ll learn how to efficiently manage all forms of data with Spark: streaming, structured, semi-structured, and unstructured. Throughout, concise topic overviews quickly get you up to speed, and extensive hands-on exercises prepare you to solve real problems.

Coverage includes:
• Understand Spark’s evolving role in the Big Data and Hadoop ecosystems
• Create Spark clusters using various deployment modes
• Control and optimize the operation of Spark clusters and applications
• Master Spark Core RDD API programming techniques
• Extend, accelerate, and optimize Spark routines with advanced API platform constructs, including shared variables, RDD storage, and partitioning
• Efficiently integrate Spark with both SQL and nonrelational data stores
• Perform stream processing and messaging with Spark Streaming and Apache Kafka
• Implement predictive modeling with SparkR and Spark MLlib

Author Biography

Jeffrey Aven is an independent Big Data, open source software and cloud computing professional based out of Melbourne, Australia. Jeffrey is a highly regarded consultant and instructor and has authored several other books including Teach Yourself Apache Spark in 24 Hours and Teach Yourself Hadoop in 24 Hours.

Table of Contents

1. Introducing Big Data and Apache Spark
2. Learning Spark Programming Basics
3. Advanced Programming using the Spark Core API
4. SQL and NoSQL Programming with Spark
5. Stream Processing and Messaging using Spark
6. Beginning Data Science and Machine Learning using Spark
7. Administering Spark

Rewards Program

Write a Review