rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780262551656

Differential Privacy

by Garfinkel, Simson L.
  • ISBN13:

    9780262551656

  • ISBN10:

    0262551659

  • eBook ISBN(s):

    9780262382175

  • Format: Paperback
  • Copyright: 2025-03-25
  • Publisher: The MIT Press

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $18.95 Save up to $5.31
  • Rent Book $13.64
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 2-3 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

How To: Textbook Rental

Looking to rent a book? Rent Differential Privacy [ISBN: 9780262551656] for the semester, quarter, and short term or search our site for other textbooks by Garfinkel, Simson L.. Renting a textbook can save you up to 90% from the cost of buying.

Summary

A robust yet accessible introduction to the idea, history, and key applications of differential privacy—the gold standard of algorithmic privacy protection.


Differential privacy (DP) is an increasingly popular, though controversial, approach to protecting personal data. DP protects confidential data by introducing carefully calibrated random numbers, called statistical noise, when the data is used. Google, Apple, and Microsoft have all integrated the technology into their software, and the US Census Bureau used DP to protect data collected in the 2020 census. In this book, Simson Garfinkel presents the underlying ideas of DP, and helps explain why DP is needed in today’s information-rich environment, why it was used as the privacy protection mechanism for the 2020 census, and why it is so controversial in some communities.

When DP is used to protect confidential data, like an advertising profile based on the web pages you have viewed with a web browser, the noise makes it impossible for someone to take that profile and reverse engineer, with absolute certainty, the underlying confidential data on which the profile was computed. The book also chronicles the history of DP and describes the key participants and its limitations. Along the way, it also presents a short history of the US Census and other approaches for data protection such as de-identification and k-anonymity.

Author Biography

Simson L. Garfinkel researches and writes at the intersection of AI, privacy, and digital forensics. He is a fellow of the AAAS, the ACM, and the IEEE.

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program