did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9781319055912

Loose-leaf Version for Calculus: Early Transcendentals

by ; ;
  • ISBN13:

    9781319055912

  • ISBN10:

    1319055915

  • Edition: 4th
  • Format: Loose-leaf
  • Copyright: 2018-12-28
  • Publisher: W. H. Freeman

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
  • Buyback Icon We Buy This Book Back!
    In-Store Credit: $39.38
    Check/Direct Deposit: $37.50
    PayPal: $37.50
List Price: $168.52 Save up to $112.49
  • Rent Book $56.03
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    IN STOCK USUALLY SHIPS IN 24 HOURS.
    HURRY! ONLY 2 COPIES IN STOCK AT THIS PRICE
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

Supplemental Materials

What is included with this book?

Summary


The authors goal for the book is that its clearly written, could be read by a calculus student and would motivate them to engage in the material and learn more. Moreover, to create a text in which exposition, graphics, and layout would work together to enhance all facets of a student’s calculus experience. They paid special attention to certain aspects of the text:

1. Clear, accessible exposition that anticipates and addresses student difficulties.
2. Layout and figures that communicate the flow of ideas.
3. Highlighted features that emphasize concepts and mathematical reasoning including Conceptual Insight, Graphical Insight, Assumptions Matter, Reminder, and Historical Perspective.
4. A rich collection of examples and exercises of graduated difficulty that teach basic skills as well as problem-solving techniques, reinforce conceptual understanding, and motivate calculus through interesting applications. Each section also contains exercises that develop additional insights and challenge students to further develop their skills.

Author Biography

Jon Rogawski received his undergraduate degree (and simultaneously a masters degree in mathematics) at Yale, and a Ph.D. in mathematics from Princeton University, where he studied under Robert Langlands. Prior to joining the Department of Mathematics at UCLA, where he is currently Full Professor, he held teaching positions at Yale and the University of Chicago, and research positions at the Institute for Advanced Study and University of Bonn. Jons areas of interest are number theory, automorphic forms, and harmonic analysis on semisimple groups. He has published numerous research articles in leading mathematical journals, including a research monograph entitled Automorphic Representations of Unitary Groups in Three Variables (Princeton University Press). He is the recipient of a Sloan Fellowship and an editor of The Pacific Journal of Mathematics. Jon and his wife Julie, a physician in family practice, have four children. They run a busy household and, whenever possible, enjoy family vacations in the mountains of California. Jon is a passionate classical music lover and plays the violin and classical guitar.

Table of Contents

Chapter 1: Precalculus Review
1.1 Real Numbers, Functions, and Graphs
1.2 Linear and Quadratic Functions
1.3 The Basic Classes of Functions
1.4 Trigonometric Functions
1.5 Inverse Functions
1.6 Exponential and Logarithmic Functions
1.7 Technology: Calculators and Computers
Chapter Review Exercises

Chapter 2: Limits
2.1 The Limit Idea: Instantaneous Velocity and Tangent Lines
2.2 Investigating Limits
2.3 Basic Limit Laws
2.4 Limits and Continuity
2.5 Indeterminate Forms
2.6 The Squeeze Theorem and Trigonometric Limits
2.7 Limits at Infinity
2.8 The Intermediate Value Theorem
2.9 The Formal Definition of a Limit
Chapter Review Exercises

Chapter 3: Differentiation
3.1 Definition of the Derivative
3.2 The Derivative as a Function
3.3 Product and Quotient Rules
3.4 Rates of Change
3.5 Higher Derivatives
3.6 Trigonometric Functions
3.7 The Chain Rule
3.8 Implicit Differentiation
3.9 Derivatives of General Exponential and Logarithmic Functions
3.10 Related Rates
Chapter Review Exercises

Chapter 4: Applications of the Derivative
4.1 Linear Approximation and Applications
4.2 Extreme Values
4.3 The Mean Value Theorem and Monotonicity
4.4 The Second Derivative and Concavity
4.5 L’Hôpital’s Rule
4.6 Analyzing and Sketching Graphs of Functions
4.7 Applied Optimization
4.8 Newton’s Method
Chapter Review Exercises

Chapter 5: Integration
5.1 Approximating and Computing Area
5.2 The Definite Integral
5.3 The Indefinite Integral
5.4 The Fundamental Theorem of Calculus, Part I
5.5 The Fundamental Theorem of Calculus, Part II
5.6 Net Change as the Integral of a Rate of Change
5.7 The Substitution Method
5.8 Further Integral Formulas
Chapter Review Exercises

Chapter 6: Applications of the Integral
6.1 Area Between Two Curves
6.2 Setting Up Integrals: Volume, Density, Average Value
6.3 Volumes of Revolution: Disks and Washers
6.4 Volumes of Revolution: Cylindrical Shells
6.5 Work and Energy
Chapter Review Exercises

Chapter 7: Techniques of Integration
7.1 Integration by Parts
7.2 Trigonometric Integrals
7.3 Trigonometric Substitution
7.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions
7.5 The Method of Partial Fractions
7.6 Strategies for Integration
7.7 Improper Integrals
7.8 Numerical Integration
Chapter Review Exercises

Chapter 8: Further Applications of the Integral
8.1 Probability and Integration
8.2 Arc Length and Surface Area
8.3 Fluid Pressure and Force
8.4 Center of Mass
Chapter Review Exercises

Chapter 9: Introduction to Differential Equations
9.1 Solving Differential Equations
9.2 Models Involving y=k(y-b)
9.3 Graphical and Numerical Methods
9.4 The Logistic Equation
9.5 First-Order Linear Equations
Chapter Review Exercises

Chapter 10: Infinite Series
10.1 Sequences
10.2 Summing an Infinite Series
10.3 Convergence of Series with Positive Terms
10.4 Absolute and Conditional Convergence
10.5 The Ratio and Root Tests and Strategies for Choosing Tests
10.6 Power Series
10.7 Taylor Polynomials
10.8 Taylor Series
Chapter Review Exercises

Chapter 11: Parametric Equations, Polar Coordinates, and Conic Sections
11.1 Parametric Equations
11.2 Arc Length and Speed
11.3 Polar Coordinates
11.4 Area and Arc Length in Polar Coordinates
11.5 Conic Sections
Chapter Review Exercises

Chapter 12: Vector Geometry
12.1 Vectors in the Plane
12.2 Three-Dimensional Space: Surfaces, Vectors, and Curves
12.3 Dot Product and the Angle Between Two Vectors
12.4 The Cross Product
12.5 Planes in 3-Space
12.6 A Survey of Quadric Surfaces
12.7 Cylindrical and Spherical Coordinates
Chapter Review Exercises

Chapter 13: Calculus of Vector-Valued Functions
13.1 Vector-Valued Functions
13.2 Calculus of Vector-Valued Functions
13.3 Arc Length and Speed
13.4 Curvature
13.5 Motion in 3-Space
13.6 Planetary Motion According to Kepler and Newton
Chapter Review Exercises

Chapter 14: Differentiation in Several Variables
14.1 Functions of Two or More Variables
14.2 Limits and Continuity in Several Variables
14.3 Partial Derivatives
14.4 Differentiability, Tangent Planes, and Linear Approximation
14.5 The Gradient and Directional Derivatives
14.6 The Chain Rule
14.7 Optimization in Several Variables
14.8 Lagrange Multipliers: Optimizing with a Constraint
Chapter Review Exercises

Chapter 15: Multiple Integration
15.1 Integration in Two Variables
15.2 Double Integrals Over More General Regions
15.3 Triple Integrals
15.4 Integration in Polar, Cylindrical, and Spherical Coordinates
15.5 Applications of Multiple Integrals
15.6 Change of Variables
Chapter Review Exercises

Chapter 16: Line and Surface Integrals
16.1 Vector Fields
16.2 Line Integrals
16.3 Conservative Vector Fields
16.4 Parametrized Surfaces and Surface Integrals
16.5 Surface Integrals of Vector Fields
Chapter Review Exercises

Chapter 17: Fundamental Theorems of Vector Analysis
17.1 Green’s Theorem
17.2 Stokes’ Theorem
17.3 Divergence Theorem
Chapter Review Exercises

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program