Polymers for Energy Storage and Conversion

  • ISBN13:


  • ISBN10:


  • Format: Hardcover
  • Copyright: 2013-05-13
  • Publisher: Wiley-Scrivener

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $187.00 Save up to $18.70
  • Rent Book $168.30
    Add to Cart Free Shipping


Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.


Polymers are increasingly finding applications in the areas of energy storage and conversion. A number of recent advances in the polymer molecular structure control thereby tuning of the polymer properties have led to these applications. This book assimilates these advances in the form of a comprehensive text which includes the synthesis and properties of a large number of polymer systems for applications in the areas of lithium batteries, photovoltaics, solar cells, etc.

Polymers for Energy Storage and Conversion describes:

  • PVAc-based polymer blend electrolytes for lithium batteries
  • The structure and properties of polymer hydrogel with respect to its applications for low to intermediate temperature polymer electrolyte-based fuel cells
  • Lithium polymer batteries based on ionic liquids
  • Conjugated polymer-inorganic semiconductor composites
  • The concept of the solar cell with the organic multiple quantum dots (MQDs)
  • The solvent effects in polymer based organic photovoltaic devices
  • The properties of the polymers which factor into their use for solar power both for niche applications as well as for large scale harvesting
  • The use of macroporous organic polymers as materials for energy gas storage.

Author Biography

Vikas Mittal is currently an assistant professor in the Department of Chemical Engineering at The Petroleum Institute in Abu Dhabi. He obtained his PhD in 2006 from the Swiss Federal Institute of Technology in Zurich, Switzerland. He also worked as a polymer engineer at BASF Polymer Research in Ludwigshafen, Germany. His research interests include polymer nanocomposites, compatibilization of organic and inorganic materials, polymer colloids, thermal stability studies, and anti-corrosion coatings. He has published more than fifty journal publications, authored as well as edited several books on these subjects.

Table of Contents

Preface ix

List of Contributors xi

1 High Performance Polymer Hydrogel based Materials for Fuel Cells 1

1.1 Introduction 1

1.2 Hydrogel Electrolyte 3

1.3 Poly(vinyl alcohol) Hydrogel 4

Summary 19

References 20

2 PVAc Based Polymer Blend Electrolytes for Lithium Batteries 27

2.1 Introduction 27

Conclusion 49

References 49

3 Lithium Polymer Batteries Based on Ionic Liquids 53

3.1 Lithium Batteries 54

3.2 Lithium Polymer Batteries Containing Ionic Liquids 61

Battery Performance 88

Glossary 94

References 96

4 Organic Quantum Dots Grown by Molecular Layer Deposition for Photovoltaics 103

4.1 Introduction 104

4.2 Molecular Layer Deposition 105

4.3 Concept of Solar Cells with Organic Quantum Dots 107

4.4 Polymer Multiple Quantum Dots 110

4.5 Molecular Multiple Quantum Dots 120

4.6 Waveguide-Type Solar Cells 127

4.7 Summary 135

References 135

5 Solvent Effects in Polymer Based Organic Photovoltaics 137

5.1 Introduction 137

5.2 Solar Cell Device Structure and Prepartion 139

5.3 Spin-Coating of Active Layer 141

5.4 Influence of Solvent on Morphology 143

5.5 Residual Solvent 152

5.6 Summary 156

Acknowledgment 157

References 157

6 Polymer-Inorganic Hybrid Solar Cells 163

6.1 Introduction 163

6.2 Hybrid Conjugated Polymer-Inorganic Semiconductor Composites 173

6.3 Conclusion 185

References 191

7 Semiconducting Polymer-based Bulk Heterojunction Solar Cells 199

7.1 Introduction 199

7.2 Optical Properties of Semiconducting Polymers 200

7.3 Electrical Properties of Semiconducting Polymers 206

7.4 Mechanical Properties Polymer Solar Cells 208

7.5 Processing of Polymers 210

7.6 State-of-the-art of the Technology 212

References 213

8 Energy Gas Storage in Porous Polymers 215

8.1 Introduction 216

8.2 Microporous Organic Polymers 217

8.3 Characterization of MOPs 239

Conclusion 242

List of Abbreviation 242

References 243

Rewards Program

Write a Review