9783433030189

Recommendations on Piling (EA Pfhle)

by Unknown
  • ISBN13:

    9783433030189

  • ISBN10:

    3433030189

  • Format: Hardcover
  • Copyright: 2013-12-31
  • Publisher: Ernst & Sohn

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $128.00 Save up to $19.20
  • Rent Book $108.80
    Add to Cart Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-4 BUSINESS DAYS

Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Summary

This handbook provides a complete overview of pile systems and their application and production. It shows their analysis based on the new safety concept providing numerous examples for single piles, pile grids and groups. These recommendations are considered rules of engineering.

Table of Contents

Members of the AK 2.1 Piling Committee of the German Geotechnical Society V

Preface of the English Version of the Recommendations of the Piling Committee of the German Geotechnical Society VII

Preface of the 2nd German edition   IX

1 Introduction to the Recommendations and their Application Principles    1

1.1 National and International Regulations for Piling Works    1

1.2 Types of Analysis and Limit States using the Partial Safety Factor Approach   2

1.2.1 New standards generation and their application to pile foundations   2

1.2.2 Actions, effects and resistances 3

1.2.3 Limit states and national application of the EC 7-1 German Handbook 4

1.2.4 Transitional regulations for applying of the Recommendations on Piling in conjunction with the EC 7-1 German Handbook   7

1.3 Planning and Testing Pile Foundations  7

2 Pile Systems 9

2.1 Overview and Classification into Pile Systems  9

2.2 Pile Construction 12

2.2.1 Bored piles      12

2.2.1.1 Cased bored piles 12

2.2.1.2 Unsupported excavations 14

2.2.1.3 Fluid-supported excavations  14

2.2.1.4 Soil-supported, continuous flight auger bored piles 15

2.2.1.5 Soil-supported, partial flight auger bored piles  16

2.2.1.6 Bored piles with enlarged bases     16

2.2.1.7 Diaphragm wall elements/barettes    17

2.2.2 Prefabricated driven piles 17

2.2.2.1 Introduction     17

2.2.2.2 Precast driven concrete piles  18

2.2.2.3 Prefabricated driven steel and cast-iron piles   18

2.2.2.4 Prefabricated driven timber piles 19

2.2.3 Cast-in-place concrete piles 20

2.2.3.1 Cast-in-place concrete piles with internal driving tube (Franki pile)  20

2.2.3.2 Cast-in-place top-driven piles (e.g. Simplex piles)    20

2.2.4 Screw piles (full displacement bored piles) 21

2.2.4.1 Introduction     21

2.2.4.2 Atlas piles   22

2.2.4.3 Fundex piles  22

2.2.5 Grouted displacement piles 23

2.2.5.1 Pressure-grouted piles    23

2.2.5.2 Vibro-injection piles  23

2.2.6 Micropiles   24

2.2.7 Tubular grouted piles     24

2.3 Foundation elements similar to piles   25

3 Pile Foundation Design and Analysis Principles   27

3.1 Pile Foundation Systems27

3.1.1 Single pile solutions  27

3.1.2 Pile grillages  28

3.1.3 Pile groups      29

3.1.4 Piled raft foundations     30

3.2 Geotechnical Investigations for Pile Foundations 32

3.3 Classification of Soils for Pile Foundations 39

3.4 Pile Systems for the Execution of Excavations and for Retaining Structures  40

3.4.1 General    40

3.4.2 Pile configurations  41

3.4.3 Pile systems and special execution requirements    41

3.4.4 Design 42

3.4.5 Reinforcement 42

3.4.6 Concrete       42

3.4.7 Impermeability of bored pile walls   42

3.5 Piles for the Stabilisation of Slopes       43

3.6 Use of sacrificial Linings 44

4 Actions and Effects  47

4.1 Introduction     47

4.2 Pile Foundation Loads Imposed by the Structure 48

4.3 Installation Effects on Piles 48

4.4 Negative Skin Friction 49

4.4.1 Introduction     49

4.4.2 Determination of the characteristic action from negative skin friction   50

4.4.3 Determination of the design values of actions or effects and method of verification   53

4.4.4 Skin friction as a result of heave in the vicinity of the pile    53

4.5 Lateral Pressure    54

4.5.1 Introduction     54

4.5.2 Necessity for design of piles for lateral pressure     55

4.5.3 Determination of the characteristic action from flow pressure 57

4.5.4 Determination of the characteristic action from the resulting earth pressure    58

4.5.5 Influences of distance and minimummoments  61

4.5.6 Effects on piles 62

4.6 Additional Effects on Raking Piles Resulting from Ground Deformations 62

4.6.1 Introduction     62

4.6.2 Surcharges resulting from anchoring steel and micropiles 63

4.7 Foundation Piles in Slopes and at Retaining Structures  65

4.7.1 Foundation piles in slopes   65

4.7.2 Foundation piles at retaining structures  67

5 Bearing Capacity and Resistances of Single Piles 69

5.1 General    69

5.2 Determining Pile Resistances from Static Pile Load Tests 70

5.2.1 General    70

5.2.2 Characteristic pile resistances in the ultimate limit state     71

5.2.3 Characteristic pile resistances in the serviceability limit state  72

5.3 Determining Pile Resistances from Dynamic Pile Load Tests 72

5.4 Axial Pile Resistances Based on Empirical Data     75

5.4.1 General    75

5.4.2 Guidance for the application  76

5.4.3 Application principles and limitations of tabled data   77

5.4.4 Prefabricated driven piles 79

5.4.4.1 General    79

5.4.4.2 Empirical values of base resistance and skin friction of prefabricated driven piles  82

5.4.4.3 Empirical data on the bearing capacity of open-ended steel tubes and hollow boxes 84

5.4.4.4 Experience with prefabricated piles in rock and very dense or cemented soils 85

5.4.5 Cast-in-place concrete piles 86

5.4.5.1 General    86

5.4.5.2 Empirical values of base resistance and skin friction of Simplex piles    87

5.4.5.3 Empirical values of base resistance and skin friction of Franki piles    88

5.4.6 Bored piles      96

5.4.6.1 General    96

5.4.6.2 Empirical values of base resistance and skin friction of bored piles     98

5.4.6.3 Empirical data for base resistance and skin friction of piles in rock and cemented soils   100

5.4.6.4 Diaphragm wall elements (barettes)       103

5.4.6.5 Bored pile walls and diaphragm walls      104

5.4.7 Partial displacement piles 104

5.4.8 Screw piles      105

5.4.8.1 General    105

5.4.8.2 Empirical values of base resistance and skin friction of screw piles     106

5.4.9 Grouted displacement piles and micropiles   108

5.4.9.1 General    108

5.4.9.2 Empirical values of skin friction of pressure-grouted piles    109

5.4.9.3 Empirical values of skin friction of vibro-injection piles     110

5.4.9.4 Empirical values of skin friction of grouted micropiles  110

5.4.9.5 Empirical values of skin friction in tubular grouted piles    111

5.4.9.6 Bond stress in grouted displacement piles 112

5.4.10 Applying the empirical data to tension piles 112

5.5 Bored Piles with Enlarged Bases 113

5.6 Additional Methods Using the EC 7-1 and EC 7-2 Handbooks  114

5.7 Pile Resistances for Grouted Shafts and Bases     114

5.8 Resistances of Piles Under Lateral Loads 115

5.9 Pile Resistances Under Dynamic Actions 116

5.10 Internal Pile Capacity     116

5.10.1 General    116

5.10.2 Allowable cross-section stresses     117

5.10.3 Resistance of piles against buckling failure in soil strata with low lateral support, and buckling analysis  118

5.11 Numerical Analyses of the Capacity of Single Piles 119

6 Stability Analyses  121

6.1 Introduction     121

6.2 Limit State Equations     121

6.3 Bearing Capacity Analysis  122

6.3.1 Axially loaded piles     122

6.3.2 Laterally loaded piles     123

6.3.3 Structural failure in piles125

6.4 Serviceability Analysies    125

6.4.1 Axially loaded piles     125

6.4.2 Laterally loaded piles     127

6.5 Pile Groups and Grillages 127

6.6 Piled Raft Foundations 127

7 Grillage Analysis   129

7.1 Analysis Models and Procedures 129

7.2 Non-linear Pile Bearing Behaviour in Grillage Analysis     130

8 Analysis and Verification of Pile Groups 131

8.1 Actions and Effects      131

8.1.1 Compression pile groups 131

8.1.2 Tension pile groups      131

8.1.3 Laterally loaded pile groups 133

8.2 Bearing Capacity and Resistances of Pile Groups 133

8.2.1 Compression pile groups 133

8.2.1.1 Introduction     133

8.2.1.2 Group effect in terms of the settlements of bored pile groups   134

8.2.1.3 Resistances in (bored) group piles    141

8.2.1.4 Displacement pile groups 146

8.2.1.5 Micropile groups 147

8.2.1.6 Layered ground    147

8.2.2 Tension pile groups      148

8.2.3 Laterally loaded groups    148

8.3 Bearing Capacity Analyses 152

8.3.1 Compression pile groups 152

8.3.1.1 External capacity 152

8.3.1.2 Structural analyses of the pile capping slab 153

8.3.2 Tension pile groups      154

8.3.2.1 Introduction     154

8.3.2.2 Analysis of the attached soil block in the UPL limit state 154

8.3.2.3 Analysis of the capacity of a single tension pile in the GEO-2 limit state    155

8.3.3 Structural failure of group piles and pile cap structures  155

8.4 Serviceability Analyses    156

8.4.1 Compression pile groups 156

8.4.2 Tension pile groups      157

8.4.3 Laterally loaded pile groups 157

8.5 Higher Accuracy Pile Group Analyses  157

9 Static Pile Load Tests 159

9.1 Introduction     159

9.2 Static Axial Pile Load Tests 159

9.2.1 Installation of test piles 159

9.2.2 Test planning     160

9.2.2.1 General notes     160

9.2.2.2 Number of test piles  161

9.2.2.3 Test load       162

9.2.2.4 Principles for the instrumentation 164

9.2.2.5 Special load situations    164

9.2.3 Loading systems   165

9.2.3.1 Introduction     165

9.2.3.2 Reaction systems 165

9.2.3.3 Hydraulic jacks 167

9.2.3.4 Embedded hydraulic jacks   168

9.2.3.5 Pile head       169

9.2.4 Instrumentation and monitoring     170

9.2.4.1 Displacement measurements  170

9.2.4.2 Load measurement at the pile head   171

9.2.4.3 Pile base resistance      171

9.2.4.3 Pile shaft resistance      172

9.2.4.5 Special instrumentation for tests with embedded hydraulic jacks 174

9.2.4.6 Pile cross-sectional area and deformation properties   174

9.2.4.7 Protection of monitoring instruments  174

9.2.5 Testing procedure   175

9.2.5.1 Load steps and loading rates  175

9.2.5.2 Monitoring intervals  177

9.2.5.3 Records    178

9.2.6 Evaluation   178

9.2.7 Documentation and reports 181

9.2.7.1 Introduction     181

9.2.7.2 Test report   181

9.2.7.3 Interpretative report      182

9.3 Static Lateral Load Test    182

9.3.1 Introduction     182

9.3.2 Installation of test piles 183

9.3.3 Test planning     183

9.3.3.1 General notes     183

9.3.3.2 Number of test piles  184

9.3.3.3 Test load       185

9.3.3.4 Ground investigations     185

9.3.3.5 Principles for the instrumentation 185

9.3.3.6 Load situations 185

9.3.4 Loading systems   186

9.3.5 Instrumentation and monitoring     187

9.3.5.1 Deflection measurement at the pile head    187

9.3.5.2 Monitoring of the deflection curve    189

9.3.5.3 Load measurement at the pile head   189

9.3.5.4 Protection of monitoring instruments  189

9.3.6 Testing procedure   189

9.3.6.1 Load steps and loading rates  189

9.3.6.2 Monitoring intervals  191

9.3.6.3 Records    191

9.3.7 Evaluation   192

9.3.8 Documentation and reports 192

9.3.8.1 Introduction     192

9.3.8.2 Test report   192

9.3.8.2 Interpretative report      194

9.4 Static Axial Load Tests on Micropiles (Composite Piles) 194

9.4.1 Installation of test piles 194

9.4.2 Test planning     195

9.4.2.1 General notes     195

9.4.2.2 Number of test piles  196

9.4.2.3 Test load       196

9.4.2.4 Principles for the instrumentation 197

9.4.2.5 Special loading situations 197

9.4.3 Loading systems   198

9.4.3.1 Reaction systems 198

9.4.3.2 Hydraulic jacks 199

9.4.3.3 Pile head       199

9.4.4 Instrumentation and monitoring     200

9.4.4.1 Displacement measurement 200

9.4.4.2 Load measurement at the pile head   200

9.4.4.3 Pile shaft resistance      200

9.4.4.4 Protection of monitoring instruments  201

9.4.5 Testing procedure   201

9.4.5.1 Introduction     201

9.4.5.2 Load steps and loading rates for System A   201

9.4.5.3 Load steps for System B   203

9.4.5.4 Monitoring intervals  204

9.4.5.5 Records    204

9.4.6 Evaluation   205

9.4.7 Documentation and reports 207

9.4.7.1 Introduction     207

9.4.7.2 Test report   207

9.4.7.3 Interpretative report      208

10 Dynamic pile load tests   209

10.1 Introduction     209

10.2 Range of Application and General Conditions      209

10.3 Theoretical Principles     210

10.4 Description of Testing Methods, Test Planning and Execution 213

10.4.1 Evaluation methods and type of load testing   213

10.4.2 Number of load tests  214

10.4.3 Ground investigations and pile installation documentation    214

10.4.4 Time of testing and internal capacity   214

10.4.5 Dynamic load testing using the high-strain method   215

10.4.5.1 Brief description   215

10.4.5.2 Loading system    215

10.4.5.3 Instrumentation    217

10.4.5.4 Performing the test  219

10.4.6 Dynamic load testing using the rapid load method    221

10.4.6.1 Brief description   221

10.4.6.2 Testing types and timing   221

10.4.6.3 Loading system    222

10.4.6.4 Instrumentation    223

10.4.6.5 Testing procedure   224

10.5 Evaluation and Interpretation of Dynamic Load Tests 225

10.5.1 Introduction     225

10.5.2 Direct methods using empirical damping values     225

10.5.2.1 Fundamentals     225

10.5.2.2 CASE method    226

10.5.2.3 TNO method 227

10.5.3 Direct method for evaluating a rapid load test using the unloading point method 228

10.5.4 Extended method with complete modelling 229

10.6 Calibrating Dynamic Pile Load Tests      231

10.7 Qualifications of Testing Institutes and Personnel 234

10.8 Documentation and Reporting     234

10.9 Testing Driving Rig Suitability  236

11 Quality Assurance during Pile Execution 239

11.1 Introduction     239

11.2 Bored Piles      239

11.2.1 Principles      239

11.2.2 Support to boreholes  240

11.2.2.1 Cased boreholes    240

11.2.2.2 Excavations supported by fluids     241

11.2.2.3 Soil-supported boring with continuous flight augers 242

11.2.3 Excavation  242

11.2.3.1 Introduction     242

11.2.3.2 Boring below the groundwater table   242

11.2.3.3 Drilling tool diameter and speed of operation      243

11.2.3.4 Cleaning the base of the borehole 244

11.2.3.5 Enlarged bases 245

11.2.4 Installation of reinforcement  245

11.2.5 Concreting  247

11.2.5.1 Concrete mix    247

11.2.5.2 Concreting procedure     248

11.2.6 Bored piles constructed with continuous flight augers 250

11.2.6.1 Introduction     250

11.2.6.2 Soil-supported auger boring 250

11.2.6.3 Cased flight auger boring 251

11.2.6.4 Concreting and installation of reinforcement   251

11.2.7 Shaft and base grouting 252

11.3 Displacement Piles      253

11.3.1 Prefabricated concrete piles – Guidance for transport, storage and installation 253

11.3.2 Cast in place concrete displacement piles 254

11.3.2.1 Water/soil ingress into the drive tube  254

11.3.2.2 Concreting  254

11.3.3 Displacement effect in cohesive soils      254

11.4 Grouted Micropiles (Composite Piles)     255

11.4.1 Introduction     255

11.4.2 Grouted monobar piles 255

11.4.3 Tubular grouted piles     256

11.4.4 Testing grouted micropiles  257

12 Pile Integrity Testing 259

12.1 Purpose and Procedures    259

12.2 Low Strain Integrity Tests   260

12.2.1 Low strain integrity test principles    260

12.2.2 Scope, number of tested piles and limitations  261

12.2.3 Pile preparation    262

12.2.4 Testing procedure   262

12.2.5 Measurement and instrumentation    263

12.2.6 Evaluation of measurements  263

12.2.7 Impedance and wave velocity      266

12.2.8 Assessment classes      268

12.2.9 Documentation and reporting      269

12.3 Ultrasonic Integrity Testing 270

12.3.1 Objective and scope     270

12.3.2 Ultrasonic integrity testing principles      270

12.3.3 Measurement     272

12.3.4 Test preparation and testing procedure  274

12.3.4.1 Test piles       274

12.3.4.2 Testing procedure   275

12.3.5 Evaluation   275

12.3.5.1 Qualitative signal evaluation  275

12.3.5.2 Quantitative signal analysis 277

12.3.5.3 Pile evaluation 278

12.3.6 Documentation and report   278

12.3.7 Special situations: testing secant pile walls and diaphragm walls 279

12.4 Testing Piles by Core Drilling     279

12.4.1 Introduction     279

12.4.2 Coring 280

12.4.3 Analysis    280

12.4.3.1 Introduction     280

12.4.3.2 Visual evaluation 281

12.4.4 Concrete strength and durability     281

12.4.5 Downhole tests 282

12.5 Other Specific Testing Methods     282

12.5.1 Introduction     282

12.5.2 Radiometric pile tests     282

12.5.3 Multi-channel low strain testing     282

12.5.4 Parallel seismic method    283

12.5.5 Induction and mise-a-la-masse methods     284

12.5.6 Other borehole-based methods  284

13 Bearing Capacity and Analyses of Piles under Cyclic, Dynamic and Impact Actions  285

13.1 Introduction     285

13.2 Cyclic, Dynamic and Impact Actions  286

13.2.1 Action and loading types 286

13.2.2 Actions from cyclic loads 287

13.2.3 Actions from dynamic loads  290

13.2.4 Actions from impact loads   291

13.3 Supplementary Geotechnical Investigations 292

13.4 Bearing Behaviour and Resistances under Cyclic Loads     294

13.4.1 Introduction     294

13.4.2 Axial loads      294

13.4.3 Lateral loads  297

13.5 Bearing Behaviour and Resistances under Dynamic Loads    299

13.6 Bearing Behaviour and Resistances under Impact Loads    300

13.6.1 Introduction     300

13.6.2 Axial loads      300

13.6.3 Lateral loads  300

13.7 Stability Analyses of Cyclic, Axially Loaded Piles   301

13.7.1 Analysis of the bearing capacity of an isolated pile   301

13.7.2 Analysis of the serviceability of a single pile   304

13.8 Stability Analyses of Cyclical, Laterally Loaded Piles 304

13.8.1 Analysis of the bearing capacity of a single pile     304

13.8.2 Analysis of the serviceability of a single pile   305

13.9 Stability Analyses of Dynamic or Impact-loaded Piles 306

Annex A Terms, Partial Safety Factors and Principles for Analysis 307

A1 Definitions and notations 307

A2 Partial safety factors γF and γE for actions and effects from EC 7-1 Handbook [44], Table A 2.1 312

A3 Partial Safety Factors for Geotechnical Parameters and Resistances from EC 7-1 Handbook [44], Tables A 2.2 and A 2.3 314

A3.1 Partial safety factors γM for geotechnical parameters   314

A3.2 Partial safety factors γR for resistances  315

A4 Correlation Factors ξi for Determining the Characteristic Pile Resistances for the Ultimate Limit State Acquired from Tested or Measured Data of Static and Dynamic Pile Tests acc to the EC 7-1 Handbook    316

A4.1 Correlation factors from static pile tests     316

A4.1 Correlation factors from dynamic pile tests 317

A5 Procedure for Determining the Resistance of Piles Against Buckling Failure in Soil Strata with Low Lateral Support (informative)     320

A5.1 Guidance notes 320

A5.2 Ground support 320

A5.3 Static system and equilibrium conditions using second-order theory (inclusion of lateral deflections)   322

A5.4 Requirements for the application of the analysis method     324

A5.5 Determining the characteristic resistance against pile buckling 325

A6 Bonding Stress in Grouted Displacement Piles (informative)   328

A6.1 Guidance notes 328

A6.2 Characteristic and design values of bonding stresses   328

Annex B Example Calculations for Pile Resistance Analysis and Verifications       331

B1 Determining the Axial Pile Resistances from Static Pile Load Tests, and Ultimate and Serviceability Limit State Analyses     331

B1.1 Objectives   331

B1.2 Deriving the characteristic pile resistances in the ultimate and serviceability limit states 332

B1.3 Bearing capacity analysis 334

B1.4 Serviceability analysis 334

B2 Characteristic Axial Pile Resistances from Dynamic Load Tests   336

B2.1 Objective       336

B2.2 Characteristic pile resistances      336

B3 Determining the Characteristic Axial Pile Resistances from Empirical Data for a Bored Pile      338

B3.1 Objective       338

B3.2 Analysis for lower and upper table values 338

B3.2.1 Determining the pile shaft resistance Rs,k 339

B3.2.2 Determining the pile base resistance Rb,k    339

B3.2.3 Characteristic resistance-settlement curve 340

B4 Determining the Characteristic Axial Pile Resistances from Empirical Data for a Prefabricated Driven Pile   341

B4.1 Objective       341

B4.2 Characteristic axial pile resistance from empirical data for lower and upper table values     341

B4.2.1 Determining the pile shaft resistance Rs,k 342

B4.2.2 Determining the pile base resistance Rb,k    342

B4.2.3 Characteristic resistance-settlement curve 343

B5 Determining the Characteristic Axial Pile Resistances from Empirical Data for a Fundex Pile  345

B5.1 Objective       345

B5.2 Characteristic axial pile resistance from empirical lower and upper table values    345

B5.2.1 Determining the pile shaft resistance Rs,k 345

B5.2.2 Determining the pile base resistance Rb,k    346

B5.2.3 Characteristic resistance-settlement curve 346

B6 Principle of the Evaluation of a Static Pile Load Test Using a Prefabricated Driven Pile shown on an Example and Comparison with Empirical Data after 5.4.4.2    348

B6.1 Objective       348

B6.2 Characteristic axial pile resistance from empirical lower and upper table values    349

B6.2.1 Determining the pile shaft resistance Rs,k 349

B6.2.2 Determining the pile base resistance Rb,k    350

B6.2.3 Characteristic resistance-settlement curve for empirical data compared to tested or measured values 350

B6.3 Characteristic axial pile resistance from static load tests     351

B6.4 Design values of pile resistances in the ultimate limit state    352

B7 Preliminary Design and Analysis of the Ultimate Limit State of Franki Piles Based on Empirical Data and Comparison to a Pile Load Test Result 354

B7.1 Objective       354

B7.2 Determining the base volume from empirical data    355

B7.2.1 Determining the pile shaft resistance Rs,k 355

B7.2.2 Determining the pile base volume of a Franki pile    356

B7.3 Analysis of the ultimate limit state (ULS, GEO-2) by means of the driving energy expended during pile installation  356

B7.3.1 Characteristic pile resistance Rc,k after applying the lower empirical values   356

B7.3.2 Characteristic pile resistance Rc,k after applying the upper empirical values   357

B7.3.3 Ultimate limit state analysis 358

B7.4 Comparison of the axial pile resistance based on empirical data with static load tests     358

B7.4.1 Characteristic axial pile resistance from empirical data  358

B7.4.2 Comparing to the static load test     359

B8 Negative Skin Friction for a Displacement Pile as a Result of Fill 360

B8.1 Objective       360

B8.2 Determining the characteristic resistance-settlement curve    361

B8.3 Determining the characteristic actions Fn,k from negative skin friction   362

B8.4 Bearing capacity analysis 364

B8.5 Serviceability analysis 364

B8.6 Analysis of internal capacity (structural failure)     365

B9 Determining the Effect on a Laterally Loaded Pile (Perpendicular to the Pile Axis) and Analysis of Structural Failure     366

B9.1 Objective       366

B9.2 Determining the characteristic action effects and stresses 367

B9.3 Design values of the action effects    370

B9.4 Minimum strength class of concrete and concrete cover     371

B9.5 Design values of materials   372

B9.6 Ultimate limit state design   372

B9.6.1 Design for bending and normal force  372

B9.6.2 Design for shear force to DIN 1045-1      373

B9.6.3 Design for shear force after [5]  377

B9.6.4 Minimum reinforcement for shear force to DIN 1045-1 378

B10 Laterally Loaded Piles 380

B10.1 Objective and systems    380

B10.2 Determining the characteristic actions and effects 381

B11 Pillar Foundation on 9 Piles – Ultimate and Serviceability Limit State Analyses Taking the Group Effect into Consideration   383

B11.1 Objective and system     383

B12 Tension Pile Group Analyses in the Ultimate Limit State 389

B12.1 Objective       389

B12.2 Isolated pile analysis  389

B12.3 Analysis of the pile group effect (attached soil monolith) 390

B13 Laterally Loaded Pile Groups: Determining the Distribution of Horizontal Subgrade Moduli 392

Annex C Examples of Dynamic Pile Load Testing and Integrity Testing 395

C 1 Dynamic Pile Load Test Evaluation: Example using the Direct Method    395

C 1.1 Objectives and test data    395

C 1.2 Case method  396

C1.3 TNO method 396

C2 Dynamic Pile Load Test Evaluation Example Using the Extended Method with Complete Modelling     397

C2.1 Objectives and test data    397

C3 Rapid Load Tests Evaluation Example Using the Unloading Point Method  401

C4 Low Strain Integrity Test Case Studies  404

C4.1 Example: pile in accordance with specification – Class A1    404

C4.2 Example: pile in accordance with specification – Class A2    404

C4.3 Example: pile with minor deviations – Class A3    405

C4.4 Example: pile with substantial impedance reduction – Class B 406

C4.5 Example: measurement can not be-evaluated – Class 0  407

C5 Integrity Tests during Driving and/or High Strain Integrity Tests   408

C5.1 Introduction     408

C5.2 Example: pile in accordance with the specification   409

C5.3 Example: defective pile    409

C5.4 Example: coupled pile    410

C6 Example: Ultrasonic Integrity Testing      411

Annex D Analysis Methods and Examples for Cyclically Loaded Piles (Informative)  417

D1 Guidance notes 417

D2 Piles Subjected to Cyclic Axial Loads      418

D2.1 Analysis methods 418

D2.1.1 Pile resistance in the ultimate limit state based on interaction diagrams       418

D2.1.2 Displacement accumulation using an empirical approach 420

D2.1.3 Approximation methods for calculating pile bearing behaviour under cyclic loads after [66]  420

D2.1.4 Approximation method for analysing pile bearing behaviour under cyclic loads after [142]     423

D2.2 Calculation examples     428

D2.2.1 Ultimate limit state analysis based on interaction diagrams after D2.1.1      428

D2.2.2 Serviceability limit state analysis with an empirical displacement approach after D2.1.2       429

D2.2.3 Calculation example for the ultimate and the serviceability limit states using the method after D.2.1.3   430

D2.2.4 Calculation example for the ultimate and the serviceability limit states using the method after D.2.1.4   435

D3 Piles Subjected to Cyclic Lateral Loads     440

D3.1 Calculation methods  440

D3.1.1 Empirical method for estimating the accumulated deflections 440

D3.1.2 Calculation approaches for estimating deflection accumulation taking to consideration non-linear soil behaviour 441

D3.1.3 Calculation approach with subgrade reaction reduction using the p-y method 441

D3.2 Examples       443

D3.2.1 Estimating deflection accumulation after D3.1.1    443

D3.2.2 Estimating deflection accumulation after D3.1.2    445

D3.2.3 Subgrade degradation adopting the p-y method after D3.1.3   450

D4 Procedure for determining an equivalent single-stage load spectrum     454

D4.1 Calculation method      454

D4.1.1 Method for determining an equivalent load cycle number for piles subjected to cyclic axial loads  454

D4.1.2 Method for determining an equivalent load cycle number for piles subjected to cyclic lateral loads     454

D4.2 Calculation examples     456

D4.2.1 Determining an equivalent load cycle number for piles subjected to cyclic axial loads after D4.1    456

D4.2.2 Determining an equivalent load cycle number for piles subjected to cyclic lateral loads after D4.1 457

Literatur    459

List of Advertisers   469

Rewards Program

Write a Review