Rejection of Emerging Organic Contaminants by Nanofiltration and Reverse Osmosis Membranes: Effects of Fouling, Modelling and Water Reuse

by ;
  • ISBN13:


  • ISBN10:


  • Edition: 1st
  • Format: Nonspecific Binding
  • Copyright: 2010-05-12
  • Publisher: CRC Press

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $105.00 Save up to $10.50
  • Rent Book $94.50
    Add to Cart Free Shipping


Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.


Now and in the future, the ever-growing demand for drinking water will lead many cities to implement indirect water reuse programs, where wastewater effluent becomes part of the drinking water sources. Pollution of those sources with emerging contaminants (micropollutants) such as endocrine disrupting compounds, pharmaceutically active compounds, pesticides and personal care products is a fact known worldwide. Although the risks of micropollutants in sources of water are partly recognized, interpretation of consequences are controversial; thus, the future effects of altered water with micropollutants remains uncertain and may constitute a point of concern for human beings when potable water consumption is involved. Therefore, many drinking water utilities target as an important goal high-quality drinking water production to lessen quality considerations that may arise from the consumers. In this thesis, nanofiltration (NF) and reverse osmosis (RO) are demonstrated to be appropriate technologies for removing a large number of micropollutants; however, the performance of NF and RO can be questioned because there are limited tools that optimise quantification of the removal of contaminants. Therefore, in this thesis, by means of the use of multivariate data analysis techniques, removal quantification is effectively determined and more understanding of the separation of micropollutants by membranes is achieved.

Rewards Program

Write a Review