did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780470852712

FACTS Modelling and Simulation in Power Networks

by ; ; ; ;
  • ISBN13:

    9780470852712

  • ISBN10:

    0470852712

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2004-03-26
  • Publisher: WILEY
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $186.61 Save up to $0.93
  • Buy New
    $185.68
    Add to Cart Free Shipping Icon Free Shipping

    PRINT ON DEMAND: 2-4 WEEKS. THIS ITEM CANNOT BE CANCELLED OR RETURNED.

Supplemental Materials

What is included with this book?

Summary

The first book to provide comprehensive coverage of FACTS power systems modeling and simulation.* Detailed coverage of the development of FACTS controllers and guidance on the selection of appropriate equipment* Computer modelling examples of the FACTS controllers for steady-state and transient stability systems* Numerous case studies and practical examples

Author Biography

Enrique Acha is the author of FACTS: Modelling and Simulation in Power Networks, published by Wiley.

Claudio R. Fuerte-Esquivel is the author of FACTS: Modelling and Simulation in Power Networks, published by Wiley.

Table of Contents

Preface xiii
1 Introduction 1(8)
1.1 Background
1(1)
1.2 Flexible Alternating Current Transmission Systems
2(1)
1.3 Inherent Limitations of Transmission Systems
3(1)
1.4 FACTS Controllers
3(3)
1.5 Steady-state Power System Analysis
6(1)
References
6(3)
2 Modelling of FACTS Controllers 9(34)
2.1 Introduction
9(2)
2.2 Modelling Philosophy
11(1)
2.3 Controllers Based on Conventional Thyristors
11(17)
2.3.1 The Thyristor-controlled Reactor
12(4)
2.3.2 The Static VAR Compensator
16(2)
2.3.3 The Thyristor-controlled Series Compensator
18(10)
2.3.3.1 Thyristor-controlled Series Capacitor Equivalent Circuit
19(1)
2.3.3.2 Steady-state Current and Voltage Equations
20(4)
2.3.3.3 Thyristor-controlled Series Capacitor Fundamental Frequency Impedance
24(4)
2.4 Power Electronic Controllers Based on Fully Controlled Semiconductor Devices
28(12)
2.4.1 The Voltage Source Converter
29(5)
2.4.1.1 Pulse-width Modulation Control
30(3)
2.4.1.2 Principles of Voltage Source Converter Operation
33(1)
2.4.2 The Static Compensator
34(1)
2.4.3 The Solid State Series Compensator
35(1)
2.4.4 The Unified Power Flow Controller
36(2)
2.4.5 The High-voltage Direct-current Based on Voltage Source Converters
38(2)
2.5 Control Capabilities of Controllers Based on Voltage Source Converters
40(1)
2.6 Summary
41(1)
References
41(2)
3 Modelling of Conventional Power Plant 43(50)
3.1 Introduction
43(1)
3.2 Transmission Line Modelling
44(26)
3.2.1 The Voltage-drop Equation
45(5)
3.2.1.1 Calculation of Lumped RLC Parameters
45(2)
3.2.1.2 Shunt Admittances
47(1)
3.2.1.3 Internal Impedances
47(1)
3.2.1.4 Ground Return Impedances
48(2)
3.2.2 Ground Wires
50(1)
3.2.3 Bundle Conductors
51(3)
3.2.4 Double Circuit Transmission Lines
54(1)
3.2.5 The Per-unit System
55(1)
3.2.6 Transmission-line Program: Basic Parameters
56(3)
3.2.7 Numerical Example of Transmission Line Parameter Calculation
59(1)
3.2.8 Long Line Effects
60(2)
3.2.9 Transmission Line Transpositions
62(1)
3.2.10 Transmission Line Program: Distributed Parameters
63(3)
3.2.11 Numerical Example of Long Line Parameter Calculation
66(1)
3.2.12 Symmetrical Components and Sequence Domain Parameters
67(2)
3.2.13 Transmission Line Program: Sequence Parameters
69(1)
3.2.14 Numerical Example of Sequence Parameter Calculation
69(1)
3.3 Power Transformer Modelling
70(12)
3.3.1 Single-phase Transformers
70(2)
3.3.2 Simple Tap-changing Transformer
72(1)
3.3.3 Advanced Tap-changing Transformer
73(2)
3.3.4 Three-phase Transformers
75(4)
3.3.4.1 Star-Star Connection
76(2)
3.3.4.2 Delta-Delta Connection
78(1)
3.3.4.3 Star-Delta Connection
78(1)
3.3.5 Sequence Domain Parameters
79(3)
3.4 Rotating Machinery Modelling
82(4)
3.4.1 Machine Voltage Equation
83(3)
3.5 System Load
86(3)
3.6 Summary
89(1)
References
90(3)
4 Conventional Power Flow 93(60)
4.1 Introduction
93(1)
4.2 General Power Flow Concepts
93(4)
4.2.1 Basic Formulation
94(3)
4.2.2 Variables and Bus Classification
97(1)
4.3 Power Flow Solution Methods
97(22)
4.3.1 Early Power Flow Algorithms
97(1)
4.3.2 The Newton-Raphson Algorithm
98(3)
4.3.3 State Variable Initialisation
101(1)
4.3.4 Generator Reactive Power Limits
101(1)
4.3.5 Linearised Frame of Reference
102(2)
4.3.6 Newton-Raphson Computer Program in Matlab® Code
104(7)
4.3.7 The Fast Decoupled Algorithm
111(1)
4.3.8 Fast Decoupled Computer Program in Matlab® Code
112(3)
4.3.9 A Benchmark Numerical Example
115(4)
4.4 Constrained Power Flow Solutions
119(25)
4.4.1 Load Tap-changing Transformers
119(13)
4.4.1.1 State Variable Initialisation and Limit Checking
121(1)
4.4.1.2 Load Tap Changer Computer Program in Matlab® Code
122(5)
4.4.1.3 Test Case of Voltage Magnitude Control with Load Tap-changing
127(3)
4.4.1.4 Combined Voltage Magnitude Control by Means of Generators and Load Tap Changers
130(1)
4.4.1.5 Control Coordination between One Load Tap Changer and One Generator
130(2)
4.4.2 Phase-shifting Transformer
132(12)
4.4.2.1 State Variable Initialisation and Limit Checking
134(1)
4.4.2.2 Phase-shifter Computer Program in Matlab® Code
135(5)
4.4.2.3 Test Cases for Phase-shifting Transformers
140(4)
4.5 Further Concepts in Power Flows
144(5)
4.5.1 Sparsity-oriented Solutions
144(1)
4.5.2 Truncated Adjustments
145(2)
4.5.2.1 Test Case of Truncated Adjustments Involving Three Load Tap-changing Transformers
145(2)
4.5.3 Special Load Tap Changer Configurations
147(8)
4.5.3.1 Test Case of Sensitivity Factors in Parallel Load Tap-changing Operation
148(1)
4.6 Summary
149(1)
References
150(3)
5 Power Flow Including FACTS Controllers 153(78)
5.1 Introduction
153(1)
5.2 Power Flow Solutions Including FACTS Controllers
154(1)
5.3 Static VAR Compensator
155(16)
5.3.1 Conventional Power Flow Models
155(3)
5.3.2 Shunt Variable Susceptance Model
158(1)
5.3.3 Static VAR Compensator Computer Program in Matlab® Code
159(3)
5.3.4 Firing-angle Model
162(1)
5.3.5 Static VAR Compensator Firing-angle Computer Program in Matlab® Code
162(4)
5.3.6 Integrated Transformer Firing-angle Model
166(1)
5.3.7 Nodal Voltage Magnitude Control using Static VAR Compensators
167(1)
5.3.8 Control Coordination between Reactive Sources
168(1)
5.3.9 Numerical Example of Voltage Magnitude Control using One Static VAR Compensator
168(3)
5.4 Thyristor-controlled Series Compensator
171(20)
5.4.1 Variable Series Impedance Power Flow Model
171(2)
5.4.2 Thyristor-controlled Series Compensator Computer Program in Matlab® Code
173(5)
5.4.3 Numerical Example of Active Power Flow Control using One Thyristor-controlled Series Compensator: Variable Series Compensator Model
178(2)
5.4.4 Firing-angle Power Flow Model
180(2)
5.4.5 Thyristor-controlled Series Compensator Firing-angle Computer Program in Matlab® Code
182(5)
5.4.6 Numerical Example of Active Power Flow Control using One Thyristor-controlled Series Compensator: Firing-angle Model
187(2)
5.4.7 Numerical Properties of the Thyristor-controlled Series Compensator Power Flow Model
189(2)
5.5 Static Synchronous Compensator
191(9)
5.5.1 Power Flow Model
191(1)
5.5.2 Static Compensator Computer Program in Matlab® Code
192(6)
5.5.3 Numerical Example of Voltage Magnitude Control using One Static Compensator
198(2)
5.6 Unified Power Flow Controller
200(16)
5.6.1 Power Flow Model
201(2)
5.6.2 Unified Power Flow Controller Computer Program in Matlab®Code
203(10)
5.6.3 Numerical Example of Power Flow Control using One Unified Power Flow Controller
213(3)
5.7 High-voltage Direct-current-based Voltage Source Converter
216(11)
5.7.1 Power Equations
217(1)
5.7.2 High-voltage Direct-current-based Voltage Source-Converter Computer Program in Matlab® Code
218(7)
5.7.3 Numerical Example of Power Flow Control using One HVDC-VSC
225(2)
5.7.3.1 HVDC-VSC Back-to-back Model
225(1)
5.7.3.2 HVDC-VSC Full Model
225(2)
5.8 Effective Initialisation of FACTS Controllers
227(1)
5.8.1 Controllers Represented by Shunt Synchronous Voltage Sources
227(1)
5.8.2 Controllers Represented by Shunt Admittances
227(1)
5.8.3 Controllers Represented by Series Reactances
227(1)
5.8.4 Controllers Represented by Series Synchronous Voltage Sources
228(1)
5.9 Summary
228(1)
References
229(2)
6 Three-phase Power Flow 231(36)
6.1 Introduction
231(1)
6.2 Power Flow in the Phase Frame of Reference
232(17)
6.2.1 Power Flow Equations
233(1)
6.2.2 Newton-Raphson Power Flow Algorithm
234(2)
6.2.3 Matlab® Code of a Power Flow Program in the Phase Frame of Reference
236(8)
6.2.4 Numerical Example of a Three-phase Network
244(5)
6.3 Static VAR Compensator
249(4)
6.3.1 Variable Susceptance Model
250(1)
6.3.2 Firing-angle Model
251(1)
6.3.3 Numerical Example: Static VAR Compensator Voltage Magnitude Balancing Capability
252(1)
6.4 Thyristor-controlled Series Compensator
253(4)
6.4.1 Variable Susceptance Model
253(2)
6.4.2 Firing-angle Model
255(2)
6.4.3 Numerical Example: Power Flow Control using One Thyristor-controlled Series Compensator
257(1)
6.5 Static Compensator
257(4)
6.5.1 Static Compensator Three-phase Numerical Example
260(1)
6.6 Unified Power Flow Controller
261(3)
6.6.1 Numerical Example of Power Flow Control using One Unified Power Flow Controller
264(1)
6.7 Summary
264(1)
References
265(2)
7 Optimal Power Flow 267(44)
7.1 Introduction
267(1)
7.2 Optimal Power Flow using Newton's Method
268(10)
7.2.1 General Formulation
268(2)
7.2.1.1 Variables
268(1)
7.2.1.2 Objective Function
269(1)
7.2.1.3 Equality Constraints
269(1)
7.2.1.4 Inequality Constraints
270(1)
7.2.2 Application of Newton's Method to Optimal Power Flow
270(1)
7.2.3 Linearised System Equations
271(1)
7.2.4 Optimality Conditions for Newton's Method
272(1)
7.2.5 Conventional Power Plant Modelling in Optimal Power Flow
272(3)
7.2.5.1 Transmission Lines
273(1)
7.2.5.2 Shunt Elements
274(1)
7.2.5.3 Synchronous Generators
275(1)
7.2.6 Handling of Inequality Constraints
275(3)
7.2.6.1 Handling of Inequality Constraints on Variables
275(2)
7.2.6.2 Handling of Inequality Constraints on Functions
277(1)
7.3 Implementation of Optimal Power Flow using Newton's Method
278(5)
7.3.1 Initial Conditions in Optimal Power Flow Solutions
279(1)
7.3.2 Active Power Schedule
279(1)
7.3.3 Lagrange Multipliers
280(1)
7.3.4 Penalty Weighting Factors
280(1)
7.3.5 Conjugated Variables
280(1)
7.3.6 An Optimal Power Flow Numerical Example
281(2)
7.4 Power System Controller Representation in Optimal Power Flow Studies
283(1)
7.5 Load Tap-changing Transformer
283(3)
7.5.1 Load Tap-changing Lagrangian Function
283(1)
7.5.2 Linearised System of Equations
284(1)
7.5.3 Load Tap-changing Transformer Test Cases
285(1)
7.6 Phase-shifting Transformer
286(5)
7.6.1 Lagrangian Function
286(1)
7.6.2 Linearised System of Equations
287(2)
7.6.3 Phase-shifting Transformer Test Cases
289(2)
7.6.3.1 Case 1: No Active Power Flow Regulation
289(1)
7.6.3.2 Case 2: Active Power Flow Regulation at LakePS
290(1)
7.7 Static VAR Compensator
291(5)
7.7.1 Lagrangian Function
291(1)
7.7.2 Linearised System of Equations
292(1)
7.7.3 Static VAR Compensator Test Cases
293(3)
7.7.3.1 Firing-angle Model
293(2)
7.7.3.2 Susceptance Model
295(1)
7.8 Thyristor-controlled Series Compensator
296(5)
7.8.1 Lagrangian Function
296(1)
7.8.2 Linearised System of Equations
297(2)
7.8.3 Thyristor-controlled Series Compensator Test Cases
299(2)
7.9 Unified Power Flow Controller
301(6)
7.9.1 Unified Power Flow Controller Lagrangian Function
301(1)
7.9.2 Direct-current Link Lagrangian Function
301(1)
7.9.3 Unified Power Flow Controller Power Flow Constraints
302(1)
7.9.4 Linearised System of Equations
302(3)
7.9.5 Unified Power Flow Controller Test Cases
305(2)
7.9.6 Unified Power Flow Controller Operating Modes
307(1)
7.10 Summary
307(1)
References
308(3)
8 Power Flow Tracing 311(32)
8.1 Introduction
311(1)
8.2 Basic Assumptions
312(1)
8.3 Mathematical Justification of the Proportional Sharing Principle
313(2)
8.4 Dominions
315(6)
8.4.1 Dominion Contributions to Active Power Flows
317(2)
8.4.2 Dominion Contributions to Reactive Power Flows
319(1)
8.4.3 Dominion Contributions to Loads and Sinks
320(1)
8.5 Tracing Algorithm
321(1)
8.6 Numerical Examples
322(17)
8.6.1 Simple Radial Network
322(2)
8.6.2 Simple Meshed Network: Active Power
324(5)
8.6.3 Meshed Network with FACTS Controllers: Reactive Power
329(2)
8.6.4 Large Network
331(1)
8.6.5 Tracing the Power Output of a Wind Generator
331(18)
8.6.5.1 The Wind Generator Model
335(1)
8.6.5.2 Numerical Example
336(3)
8.7 Summary
339(1)
References
340(3)
Appendix A: Jacobian Elements for FACTS Controllers in Positive Sequence Power Flow 343(6)
A.1 Tap-changing Transformer
343(1)
A.2 Thyristor-controlled Series Compensator
344(1)
A.3 Static Synchronous Compensator
345(1)
A.4 Unified Power Flow Controller
345(2)
A.5 High-voltage Direct-current-based Voltage Source Converter
347(2)
Appendix B: Gradient and Hessian Elements for Optimal Power Flow Newton's Method 349(16)
B.1 First and Second Partial Derivatives for Transmission Lines
349(3)
B.1.1 The Gradient Vector
349(1)
B.1.2 The Matrix W
350(2)
B.2 Phase Shifter Transformer
352(3)
B.3 Static VAR Compensator
355(1)
B.4 Thyristor-controlled Series Compensator
356(1)
B.5 Unified Power Flow Controller
357(8)
Appendix C: Matlab® Computer Program for Optimal Power Flow Solutions using Newton's Method 365(34)
Index 399

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program