Your order must be $35 or more to qualify for free economy shipping.
Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
Get Rewarded for Ordering Your Textbooks!Enroll Now
Customer ReviewsRead Reviews
Write a Review
List Price: $125.00
Summary
Emphasizing a conceptual understanding of concrete design and analysis, Structural Concrete, Third Edition builds the students understanding by presenting design methods in an easy-to-understand manner supported with the use of numerous examples and problems. Updated for the latest ACI 318-05 code, this new Third Edition includes up-to-date coverage of seismic design, including IBC 2003 references, and new methods for predicting shear and creep in concrete based on the authors own research over the past ten years which will be reflected in the forthcoming ACI 209 code.
Author Biography
Akthem Al Manaseer is Professor and Chair of Civil and Environmental Engineering at San Jose State University, California.
Table of Contents
Preface.
Notation.
Conversion Factors.
1. Introduction.
1.1 Structural Concrete.
1.2 Historical Background.
1.3 Advantages and Disadvantages of Reinforced Concrete.
1.4 Codes of Practice.
1.5 Design Philosophy and Concepts.
1.6 Units of Measurement.
1.7 Loads.
1.8 Safety Provisions.
1.9 Structural Concrete Elements.
1.10 Structural Concrete Design.
1.11 Accuracy of Calculations.
1.12 Concrete High-Rise Buildings.
References.
2. Properties of Reinforced Concrete.
2.1 Factors Affecting the Strength of Concrete.
2.2 Compressive Strength.
2.3 Stress-Strain Curves of Concrete.
2.4 Tensile Strength of Concrete.
2.5 Flexural Strength (Modulus of Rupture) of Concrete.
2.6 Shear Strength.
2.7 Modulus of Elasticity of Concrete.
2.8 Poisson's Ratio.
2.9 Shear Modulus.
2.10 Modular Ratio.
2.11 Volume Changes of Concrete.
2.12 Creep.
2.13 Models for predicting the shrinkage and creep of concrete.
2.14 Unit Weight of Concrete.
2.15 Fire Resistance.
2.16 High-Performance Concrete.
2.17 Lightweight Concrete.
2.18 Fibrous Concrete.
2.19 Steel Reinforcement.
Summary.
References.
Problems.
3. Flexural Analysis of Reinforced Concrete Beams.
3.1 Introduction.
3.2 Assumptions.
3.3 Behavior of Simply Supported Reinforced Concrete Beam Loaded to Failure.
3.4 Types of Flexural Failure and Strain Limits.
3.5 Load Factors.
3.6 Strength-Reduction Factor.
3.7 Significance of Analysis and Design Expressions.
3.8 Equivalent Compressive Stress Distribution.
3.9 Singly Reinforced Rectangular Section in Bending.
3.10 Lower Limit or Minimum Percentage of Steel.
3.11 Adequacy of Sections.
3.12 Bundled Bars.
3.13 Sections in the Transition Region.
3.14 Rectangular Sections with Compression Reinforcement.
3.15 Analysis of T- and I-Sections.
3.16 Dimensions of Isolated T-Shaped Sections.
3.17 Inverted L-Shaped Sections.
3.18 Sections of Other Shapes.
3.19 Analysis of Sections Using Tables.
3.20 Additional Examples.
3.21 Examples Using SI Units.
Summary.
References.
Problems.
4. Flexural Design of Reinforced Concrete . *Introduction. *Rectangular Sections with Tension Reinforcement Only.
4.3 Spacing of Reinforcement and Concrete Cover.
4.4 Rectangular Sections with Compression Reinforcement.
4.5 Design of T-Sections.
4.6 Additional Examples.
4.7 Examples Using SI Units.
Summary.
Problems.
5. Alternative Design Methods.
5.1 Introduction.
5.2 Load Factors.
5.3 Strenght-Reduction Factor.
5.4 Rectangular Sections in Bending with Tension Reinforcement.
5.5 Rectangular Sections with Compression Reinforcement.
5.6 Design of T-Sections.
5.7 Strut and Tie Method.
References.
6. Deflection and Control of Cracking.
6.1 Deflection of Structural Concrete Members.
6.2 Instantaneous Deflection.
6.3 Long-Time Deflection.
6.4 Allowable Deflection.
6.5 Deflection Due to Combinations of Loads.
6.6 Cracks in Flexural Members.
6.7 ACI Code Requirements.
Summary.
References.
Problems.
7. Development Length of Reinforcing Bars.
7.1 Introduction.
7.2 Development of Bond Stresses.
7.3 Development Length in Tension.
7.4 Development Length in Compression.
7.5 Summary of the Computation of ld in Tension.
7.6 Critical Sections in Flexural Members.
7.7 Standard Hooks (ACI Code, Sections 12.5 and 7.1).