did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780135732410

VLSI Design Methodology Development

by
  • ISBN13:

    9780135732410

  • ISBN10:

    0135732417

  • Edition: 1st
  • Format: Paperback
  • Copyright: 2019-07-08
  • Publisher: Pearson
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
  • Complimentary 7-Day eTextbook Access - Read more
    When you rent or buy this book, you will receive complimentary 7-day online access to the eTextbook version from your PC, Mac, tablet, or smartphone. Feature not included on Marketplace Items.
List Price: $120.00 Save up to $3.60
  • Buy New
    $116.40
    Add to Cart Free Shipping Icon Free Shipping

    THIS IS A HARD-TO-FIND TITLE. WE ARE MAKING EVERY EFFORT TO OBTAIN THIS ITEM, BUT DO NOT GUARANTEE STOCK.

    7-Day eTextbook Access 7-Day eTextbook Access

Supplemental Materials

What is included with this book?

Summary

The Complete, Modern Tutorial on Practical VLSI Chip Design, Validation, and Analysis

As microelectronics engineers design complex chips using existing circuit libraries, they must ensure correct logical, physical, and electrical properties, and prepare for reliable foundry fabrication. VLSI Design Methodology Development focuses on the design and analysis steps needed to perform these tasks and successfully complete a modern chip design.

Microprocessor design authority Tom Dillinger carefully introduces core concepts, and then guides engineers through modeling, functional design validation, design implementation, electrical analysis, and release to manufacturing. Writing from the engineer’s perspective, he covers underlying EDA tool algorithms, flows, criteria for assessing project status, and key tradeoffs and interdependencies. This fresh and accessible tutorial will be valuable to all VLSI system designers, senior undergraduate or graduate students of microelectronics design, and companies offering internal courses for engineers at all levels.
  • Reflect complexity, cost, resources, and schedules in planning a chip design project
  • Perform hierarchical design decomposition, floorplanning, and physical integration, addressing DFT, DFM, and DFY requirements
  • Model functionality and behavior, validate designs, and verify formal equivalency
  • Apply EDA tools for logic synthesis, placement, and routing
  • Analyze timing, noise, power, and electrical issues
  • Prepare for manufacturing release and bring-up, from mastering ECOs to qualification

This guide is for all VLSI system designers, senior undergraduate or graduate students of microelectronics design, and companies offering internal courses for engineers at all levels. It is applicable to engineering teams undertaking new projects and migrating existing designs to new technologies.

Author Biography

Thomas Dillin ger has more than 30 years of experience in the microelectronics industry, including semiconductor circuit design, fabrication process research, and EDA tool development. He has been responsible for the design methodology development for ASIC, SoC, and complex microprocessor chips for IBM, Sun Microsystems/Oracle, and AMD. He is the author of the book VLSI Engineering and has written for SemiWiki.


Table of Contents

Topic I. Overview of VLSI Design Methodology
1. Introduction
2. VLSI Design Methodology
3. Hierarchical Design Decomposition

Topic II. Modeling
4. Modeling

Topic III. Design Validation
5. Characteristics of Functional Validation
6. Characteristics of Formal Equivalency Verification

Topic IV. Design Implementation
7. Logic Synthesis
8. Placement
9. Routing

Topic V. Electrical Analysis
10. Layout Parasitic Extraction and Electrical Modeling
11. Timing Analysis Section
12. Noise Analysis
13. Power Analysis
14. Power Rail Voltage Drop Analysis
15. Electromigration (EM) Reliability Analysis
16. Miscellaneous Electrical Analysis Requirements

Topic VI. Preparation for Manufacturing Release and Bring-up
17. ECOs
18. Physical Design Verification
19. Design-for-Testability Analysis
20. Preparation for Tapeout
21. Post-Silicon Debug and Characterization (Bring-up) and Product Qualification

Summary
Epilogue

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program