did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780521370950

The Art of Electronics

by
  • ISBN13:

    9780521370950

  • ISBN10:

    0521370957

  • Edition: 2nd
  • Format: Hardcover
  • Copyright: 1989-07-28
  • Publisher: Cambridge University Press

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $149.99 Save up to $37.50
  • Buy Used
    $112.49
    Add to Cart Free Shipping Icon Free Shipping

    USUALLY SHIPS IN 2-4 BUSINESS DAYS

Supplemental Materials

What is included with this book?

Summary

This is the thoroughly revised and updated second edition of the hugely successful The Art of Electronics. Widely accepted as the single authoritative text and reference on electronic circuit design, both analog and digital, the original edition sold over 125,000 copies worldwide and was translated into eight languages. The book revolutionized the teaching of electronics by emphasizing the methods actually used by citcuit designers - a combination of some basic laws, rules to thumb, and a large nonmathematical treatment that encourages circuit values and performance. The new Art of Electronics retains the feeling of informality and easy access that helped make the first edition so successful and popular. It is an ideal first textbook on electronics for scientists and engineers and an indispensable reference for anyone, professional or amateur, who works with electronic circuits.

Table of Contents

List of tables
xvi(3)
Preface xix(2)
Preface to first edition xxi
CHAPTER 1 FOUNDATIONS
1(60)
Introduction 1(1)
Voltage, current, and resistance 2(13)
1.01 Voltage and current
2(2)
1.02 Relationship between voltage and current: resistors
4(4)
1.03 Voltage dividers
8(1)
1.04 Voltage and current sources
9(2)
1.05 Thevenin's equivalent circuit
11(2)
1.06 Small-signal resistance
13(2)
Signals 15(5)
1.07 Sinusoidal signals
15(1)
1.08 Signal amplitudes and decibels
16(1)
1.09 Other signals
17(2)
1.10 Logic levels
19(1)
1.11 Signal sources
19(1)
Capacitors and ac circuits 20(8)
1.12 Capacitors
20(3)
1.13 RC circuits: V and I versus time
23(2)
1.14 Differentiators
25(1)
1.15 Integrators
26(2)
Inductors and transformers 28(1)
1.16 Inductors
28(1)
1.17 Transformers
28(1)
Impedance and reactance 29(15)
1.18 Frequency analysis of reactive circuits
30(5)
1.19 RC filters
35(4)
1.20 Phasor diagrams
39(1)
1.21 "Poles" and decibels per octave
40(1)
1.22 Resonant circuits and active filters
41(1)
1.23 Other capacitor applications
42(2)
1.24 Thevenin's theorem generalized
44(1)
Diodes and diode circuits 44(9)
1.25 Diodes
44(1)
1.26 Rectification
44(1)
1.27 Power-supply filtering
45(1)
1.28 Rectifier configurations for power supplies
46(2)
1.29 Regulators
48(1)
1.30 Circuit applications of diodes
48(4)
1.31 Inductive loads and diode protection
52(1)
Other passive components 53(8)
1.32 Electromechanical devices
53(4)
1.33 Indicators
57(1)
1.34 Variable components
57(1)
Additional exercises
58(3)
CHAPTER 2 TRANSISTORS
61(52)
Introduction 61(1)
2.01 First transistor model: current amplifier
62(1)
Some basic transistor circuits 63(16)
2.02 Transistor switch
63(2)
2.03 Emitter follower
65(3)
2.04 Emitter followers as voltage regulators
68(1)
2.05 Emitter follower biasing
69(3)
2.06 Transistor current source
72(4)
2.07 Common-emitter amplifier
76(1)
2.08 Unity-gain phase splitter
77(1)
2.09 Transconductance
78(1)
Ebers-Moll model applied to basic transistor circuits 79(12)
2.10 Improved transistor model: transconductance amplifier
79(2)
2.11 The emitter follower revisited
81(1)
2.12 The common-emitter amplifier revisited
82(2)
2.13 Biasing the common-emitter amplifier
84(4)
2.14 Current mirrors
88(3)
Some amplifier building blocks 91(13)
2.15 Push-pull output stages
91(3)
2.16 Darlington connection
94(2)
2.17 Bootstrapping
96(2)
2.18 Differential amplifiers
98(4)
2.19 Capacitance and Miller effect
102(2)
2.20 Field-effect transistors
104(1)
Some typical transistor circuits 104(3)
2.21 Regulated power supply
104(1)
2.22 Temperature controller
105(2)
2.23 Simple logic with transistors and diodes
107(1)
Self-explanatory circuits 107(6)
2.24 Good circuits
107(1)
2.25 Bad circuits
107(1)
Additional exercises
107(6)
CHAPTER 3 FIELD-EFFECT TRANSISTORS
113(62)
Introduction 113(1)
3.01 FET characteristics
114(3)
3.02 FET types
117(2)
3.03 Universal FET characteristics
119(2)
3.04 FET drain characteristics
121(1)
3.05 Manufacturing spread of FET characteristics
122(2)
Basic FET circuits 124(16)
3.06 JFET current sources
125(4)
3.07 FET amplifiers
129(4)
3.08 Source followers
133(2)
3.09 FET gate current
135(3)
3.10 FETs as variable resistors
138(2)
FET switches 140(31)
3.11 FET analog switches
141(3)
3.12 Limitations of FET switches
144(7)
3.13 Some FET analog switch examples
151(2)
3.14 MOSFET logic and power switches
153(16)
3.15 MOSFET handling precautions
169(2)
Self-explanatory circuits 171(4)
3.16 Circuit ideas
171(1)
3.17 Bad circuits
171(4)
vskip6pt
CHAPTER 4 FEEDBACK AND OPERATIONAL AMPLIFIERS
175(88)
Introduction 175(1)
4.01 Introduction to feedback
175(1)
4.02 Operational amplifiers
176(1)
4.03 The golden rules
177(1)
Basic op-amp circuits 177(6)
4.04 Inverting amplifier
177(1)
4.05 Noninverting amplifier
178(1)
4.06 Follower
179(1)
4.07 Current sources
180(2)
4.08 Basic cautions for op-amp circuits
182(1)
An op-amp smorgasbord 183(5)
4.09 Linear circuits
183(4)
4.10 Nonlinear circuits
187(1)
A detailed look at op-amp behavior 188(25)
4.11 Departure from ideal op-amp performance
189(4)
4.12 Effects of op-amp limitations on circuit behavior
193(17)
4.13 Low-power and programmable op-amps
210(3)
A detailed look at selected op-amp circuits 213(11)
4.14 Logarithmic amplifier
213(4)
4.15 Active peak detector
217(3)
4.16 Sample-and-hold
220(1)
4.17 Active clamp
221(1)
4.18 Absolute-value circuit
221(1)
4.19 Integrators
222(2)
4.20 Differentiators
224(1)
Op-amp operation with a single power supply 224(5)
4.21 Biasing single-supply ac amplifiers
225(1)
4.22 Single-supply op-amps
225(4)
Comparators and Schmitt trigger 229(3)
4.23 Comparators
229(2)
4.24 Schmitt trigger
231(1)
Feedback with finite-gain amplifiers 232(6)
4.25 Gain equation
232(1)
4.26 Effects of feedback on amplifier circuits
233(3)
4.27 Two examples of transistor amplifiers with feedback
236(2)
Some typical op-amp circuits 238(4)
4.28 General-purpose lab amplifier
238(2)
4.29 Voltage-controlled oscillator
240(1)
4.30 JFET linear switch with RON compensation
241(1)
4.31 TTL zero-crossing detector
242(1)
4.32 Load-current-sensing circuit
242(1)
Feedback amplifier frequency compensation 242(8)
4.33 Gain and phase shift versus frequency
243(2)
4.34 Amplifier compensation methods
245(2)
4.35 Frequency response of the feedback network
247(3)
Self-explanatory circuits 250(13)
4.36 Circuit ideas
250(1)
4.37 Bad circuits
250(1)
Additional exercises
251(12)
CHAPTER 5 ACTIVE FILTERS AND OSCILLATORS
263(44)
Active filters 263(1)
5.01 Frequency response with RC filters
263(2)
5.02 Ideal performance with LC filters
265(1)
5.03 Enter active filters: an overview
266(1)
5.04 Key filter performance criteria
267(1)
5.05 Filter types
268(4)
Active filter circuits 272(12)
5.06 VCVS circuits
273(1)
5.07 VCVS filter design using our simplified table
274(2)
5.08 State-variable filters
276(3)
5.09 Twin-T notch filters
279(2)
5.10 Gyrator filter realizations
281(1)
5.11 Switched-capacitor filters
281(3)
Oscillators 284(19)
5.12 Introduction to oscillators
284(1)
5.13 Relaxation oscillators
284(2)
5.14 The classic timer chip: the 555
286(5)
5.15 Voltage-controlled oscillators
291(1)
5.16 Quadrature oscillators
291(5)
5.17 Wien bridge and LC oscillators
296(1)
5.18 LC oscillators
297(3)
5.19 Quartz-crystal oscillators
300(3)
Self-explanatory circuits 303(4)
5.20 Circuit ideas
303(1)
Additional exercises
303(4)
CHAPTER 6 VOLTAGE REGULATORS AND POWER CIRCUITS
307(84)
Basic regulator circuits with the classic 723 307(5)
6.01 The 723 regulator
307(2)
6.02 Positive regulator
309(2)
6.03 High-current regulator
311(1)
Heat and power design 312(13)
6.04 Power transistors and heat sinking
312(4)
6.05 Foldback current limiting
316(1)
6.06 Overvoltage crowbars
317(3)
6.07 Further considerations in high-current power-supply design
320(1)
6.08 Programmable supplies
321(2)
6.09 Power-supply circuit example
323(2)
6.10 Other regulator ICs
325(1)
The unregulated supply 325(6)
6.11 ac line components
326(2)
6.12 Transformer
328(1)
6.13 dc components
329(2)
Voltage references 331(10)
6.14 Zener diodes
332(3)
6.15 Bandgap (VBE) reference
335(6)
Three-terminal and four-terminal regulators 341(27)
6.16 Three-terminal regulators
341(3)
6.17 Three-terminal adjustable regulators
344(1)
6.18 Additional comments about 3-terminal regulators
345(10)
6.19 Switching regulators and dc-dc converters
355(13)
Special-purpose power-supply circuits 368(16)
6.20 High-voltage regulators
368(6)
6.21 Low-noise, low-drift supplies
374(2)
6.22 Micropower regulators
376(1)
6.23 Flying-capacitor (charge pump) voltage converters
377(2)
6.24 Constant-current supplies
379(3)
6.25 Commercial power-supply modules
382(2)
Self-explanatory circuits 384(7)
6.26 Circuit ideas
384(1)
6.27 Bad circuits
384(1)
Additional exercises
384(7)
CHAPTER 7 PRECISION CIRCUITS AND LOW-NOISE TECHNIQUES
391(80)
Precision op-amp design techniques 391(30)
7.01 Precision versus dynamic range
391(1)
7.02 Error budget
392(1)
7.03 Example circuit: precision amplifier with automatic null offset
392(2)
7.04 A precision-design error budget
394(1)
7.05 Component errors
395(1)
7.06 Amplifier input errors
396(7)
7.07 Amplifier output errors
403(12)
7.08 Auto-zeroing (chopper-stabilized) amplifiers
415(6)
Differential and instrumentation amplifiers 421(7)
7.09 Differencing amplifier
421(4)
7.10 Standard three-op-amp instrumentation amplifier
425(3)
Amplifier noise 428(21)
7.11 Origins and kinds of noise
430(3)
7.12 Signal-to-noise ratio and noise figure
433(3)
7.13 Transistor amplifier voltage and current noise
436(2)
7.14 Low-noise design with transistors
438(5)
7.15 FET noise
443(2)
7.16 Selecting low-noise transistors
445(1)
7.17 Noise in differential and feedback amplifiers
445(4)
Noise measurements and noise sources 449(6)
7.18 Measurement without a noise source
449(1)
7.19 Measurement with noise source
450(2)
7.20 Noise and signal sources
452(1)
7.21 Bandwidth limiting and rms voltage measurement
453(1)
7.22 Noise potpourri
454(1)
Interference: shielding and grounding 455(11)
7.23 Interference
455(2)
7.24 Signal grounds
457(1)
7.25 Grounding between instruments
457(9)
Self-explanatory circuits 466(5)
7.26 Circuit ideas
466(1)
Additional exercises
466(5)
CHAPTER 8 DIGITAL ELECTRONICS
471(94)
Basic logic concepts 471(13)
8.01 Digital versus analog
471(1)
8.02 Logic states
472(1)
8.03 Number codes
473(5)
8.04 Gates and truth tables
478(2)
8.05 Discrete circuits for gates
480(1)
8.06 Gate circuit example
481(1)
8.07 Assertion-level logic notation
482(2)
TTL and CMOS 484(6)
8.08 Catalog of common gates
484(1)
8.09 IC gate circuits
485(1)
8.10 TTL and CMOS characteristics
486(1)
8.11 Three-state and open-collector devices
487(3)
Combinational logic 490(14)
8.12 Logic identities
491(1)
8.13 Minimization and Karnaugh maps
492(1)
8.14 Combinational functions available as ICs
493(7)
8.15 Implementing arbitrary truth tables
500(4)
Sequential logic 504(13)
8.16 Devices with memory: flipflops
504(3)
8.17 Clocked flip-flops
507(5)
8.18 Combining memory and gates: sequential logic
512(3)
8.19 Synchronizer
515(2)
Monostable multivibrators 517(6)
8.20 One-shot characteristics
517(2)
8.21 Monostable circuit example
519(1)
8.22 Cautionary notes about monostables
519(3)
8.23 Timing with counters
522(1)
Sequential functions available as ICs 523(21)
8.24 Latches and registers
523(1)
8.25 Counters
524(1)
8.26 Shift registers
525(2)
8.27 Sequential PALs
527(14)
8.28 Miscellaneous sequential functions
541(3)
Some typical digital circuits 544(7)
8.29 Modulo-n counter: a timing example
544(2)
8.30 Multiplexed LED digital display
546(2)
8.31 Sidereal telescope drive
548(1)
8.32 An n-pulse generator
548(3)
Logic pathology 551(5)
8.33 dc problems
551(1)
8.34 Switching problems
552(2)
8.35 Congenital weaknesses of TTL and CMOS
554(2)
Self-explanatory circuits 556(9)
8.36 Circuit ideas
556(1)
8.37 Bad circuits
556(1)
Additional exercises
556(9)
CHAPTER 9 DIGITAL MEETS ANALOG
565(108)
CMOS and TTL logic interfacing 565(34)
9.01 Logic family chronology
565(5)
9.02 Input and output characteristics
570(2)
9.03 Interfacing between logic families
572(3)
9.04 Driving CMOS amd TTL inputs
575(2)
9.05 Driving digital logic from comparators and op-amps
577(2)
9.06 Some comments about logic inputs
579(1)
9.07 Comparators
580(2)
9.08 Driving external digital loads from CMOS and TTL
582(6)
9.09 NMOS LSI interfacing
588(2)
9.10 Opto-electronics
590(9)
Digital signals and long wires 599(13)
9.11 On-board interconnections
599(2)
9.12 Intercard connections
601(1)
9.13 Data buses
602(1)
9.14 Driving cables
603(9)
Analog/digital conversion 612(24)
9.15 Introduction to A/D conversion
612(2)
9.16 Digital-to-analog converters (DACs)
614(4)
9.17 Time-domain (averaging) DACs
618(1)
9.18 Multiplying DACs
619(1)
9.19 Choosing a DAC
619(2)
9.20 Analog-to-digital converters
621(5)
9.21 Charge-balancing techniques
626(4)
9.22 Some unusual A/D and D/A converters
630(1)
9.23 Choosing an ADC
631(5)
Some A/D conversion examples 636(5)
9.24 16-Channel A/D data-acquisition system
636(2)
9.25 3 1.2-Digit voltmeter
638(2)
9.26 Coulomb meter
640(1)
Phase-locked loops 641(14)
9.27 Introduction to phase-locked loops
641(5)
9.28 PLL design
646(1)
9.29 Design example: frequency multiplier
647(4)
9.30 PLL capture and lock
651(1)
9.31 Some PLL applications
652(3)
Pseudo-random bit sequences and noise generation 655(12)
9.32 Digital noise generation
655(1)
9.33 Feedback shift register sequences
655(3)
9.34 Analog noise generation from maximal-length sequences
658(1)
9.35 Power spectrum of shift register sequences
658(2)
9.36 Low-pass filtering
660(1)
9.37 Wrap-up
661(3)
9.38 Digital filters
664(3)
Self-explanatory circuits 667(6)
9.39 Circuit ideas
667(1)
9.40 Bad circuits
668(1)
Additional exercises
668(5)
CHAPTER 10 MICROCOMPUTERS
673(70)
Minicomputers, microcomputers, and microprocessors 673(5)
10.01 Computer architecture
674(4)
A computer instruction set 678(6)
10.02 Assembly language and machine language
678(1)
10.03 Simplified 8086/8 instruction set
679(4)
10.04 A programming example
683(1)
Bus signals and interfacing 684(30)
10.05 Fundamental bus signals: data, address, strobe
684(1)
10.06 Programmed I/O: data out
685(4)
10.07 Programmed I/O: data in
689(1)
10.08 Programmed I/O: status registers
690(3)
10.09 Interrupts
693(2)
10.10 Interrupt handling
695(2)
10.11 Interrupts in general
697(4)
10.12 Direct memory access
701(3)
10.13 Summary of the IBM PC's bus signals
704(3)
10.14 Synchronous versus asynchronous bus communication
707(1)
10.15 Other microcomputer buses
708(3)
10.16 Connecting peripherals to the computer
711(3)
Software system concepts 714(5)
10.17 Programming
714(2)
10.18 Operating systems, files, and use of memory
716(3)
Data communications concepts 719(24)
10.19 Serial communication and ASCII
720(10)
10.20 Parallel communication: Centronics, SCSI, IPI, GPIB (488)
730(4)
10.21 Local area networks
734(2)
10.22 Interface example: hardware data packing
736(2)
10.23 Number formats
738(5)
CHAPTER 11 MICROPROCESSORS
743(84)
A detailed look at the 68008 744(16)
11.01 Registers, memory, and I/O
744(1)
11.02 Instruction set and addressing
745(5)
11.03 Machine-language representation
750(3)
11.04 Bus signals
753(7)
A complete design example: analog signal averager 760(39)
11.05 Circuit design
760(14)
11.06 Programming: defining the task
774(3)
11.07 Programming: details
777(19)
11.08 Performance
796(1)
11.09 Some afterthoughts
797(2)
Microprocessor support chips 799(28)
11.10 Medium-scale integration
800(2)
11.11 Peripheral LSI chips
802(10)
11.12 Memory
812(8)
11.13 Other microprocessors
820(1)
11.14 Emulators, development systems, logic analyzers, and evaluation boards
821(6)
CHAPTER 12 ELECTRONIC CONSTRUCTION TECHNIQUES
827(36)
Prototyping methods 827(3)
12.01 Breadboards
827(1)
12.02 PC prototyping boards
828(1)
12.03 Wire-Wrap panels
828(2)
Printed circuits 830(22)
12.04 PC board fabrication
830(5)
12.05 PC board design
835(3)
12.06 Stuffing PC boards
838(2)
12.07 Some further thoughts on PC boards
840(1)
12.08 Advanced techniques
841(11)
Instrument construction 852(11)
12.09 Housing circuit boards in an instrument
852(2)
12.10 Cabinets
854(1)
12.11 Construction hints
855(1)
12.12 Cooling
855(3)
12.13 Some electrical hints
858(2)
12.14 Where to get components
860(3)
CHAPTER 13 HIGH-FREQUENCY AND HIGH-SPEED TECHNIQUES
863(54)
High-frequency amplifiers 863(16)
13.01 Transistor amplifiers at high frequencies: first look
863(1)
13.02 High-frequency amplifiers: the ac model
864(2)
13.03 A high-frequency calculation example
866(2)
13.04 High-frequency amplifier configurations
868(1)
13.05 A wideband design example
869(3)
13.06 Some refinements to the ac model
872(1)
13.07 The shunt-series pair
872(1)
13.08 Modular amplifiers
873(6)
Radiofrequency circuit elements 879(13)
13.09 Transmission lines
879(2)
13.10 Stubs, baluns, and transformers
881(1)
13.11 Tuned amplifiers
882(2)
13.12 Radiofrequency circuit elements
884(4)
13.13 Measuring amplitude or power
888(4)
Radiofrequency communications: AM 892(5)
13.14 Some communications concepts
892(2)
13.15 Amplitude modulation
894(1)
13.16 Superheterodyne receiver
895(2)
Advanced modulation methods 897(5)
13.17 Single sideband
897(1)
13.18 Frequency modulation
898(2)
13.19 Frequency-shift keying
900(1)
13.20 Pulse-modulation schemes
900(2)
Radiofrequency circuit tricks 902(2)
13.21 Special construction techniques
902(1)
13.22 Exotic RF amplifiers and devices
903(1)
High-speed switching 904(5)
13.23 Transistor model and equations
905(3)
13.24 Analog modeling tools
908(1)
Some switching-speed examples 909(4)
13.25 High-voltage driver
909(1)
13.26 Open-collector bus driver
910(1)
13.27 Example: photomultiplier preamp
911(2)
Self-explanatory circuits 913(4)
13.28 Circuit ideas
913(1)
Additional exercises
913(4)
CHAPTER 14 LOW-POWER DESIGN
917(70)
Introduction 917(1)
14.01 Low-power applications
918(2)
Power sources 920(18)
14.02 Battery types
920(11)
14.03 Wall-plug-in units
931(1)
14.04 Solar cells
932(1)
14.05 Signal currents
933(5)
Power switching and micropower regulators 938(10)
14.06 Power switching
938(3)
14.07 Micropower regulators
941(3)
14.08 Ground reference
944(4)
14.09 Micropower voltage references and temperature sensors
948(1)
Linear micropower design techniques 948(21)
14.10 Problems of micropower linear design
950(1)
14.11 Discrete linear design example
950(1)
14.12 Micropower operational amplifiers
951(14)
14.13 Micropower comparators
965(1)
14.14 Micropower timers and oscillators
965(4)
Micropower digital design 969(16)
14.15 CMOS families
969(1)
14.16 Keeping CMOS low power
970(4)
14.17 Micropower microprocessors and peripherals
974(4)
14.18 Microprocessor design example: degree-day logger
978(7)
Self-explanatory circuits 985(2)
14.19 Circuit ideas
985(2)
CHAPTER 15 MEASUREMENTS AND SIGNAL PROCESSING
987(56)
Overview 987(1)
Measurement transducers 988(28)
15.01 Temperature
988(8)
15.02 Light level
996(5)
15.03 Strain and displacement
1001(3)
15.04 Acceleration, pressure, force, velocity
1004(3)
15.05 Magnetic field
1007(1)
15.06 Vacuum gauges
1007(1)
15.07 Particle detectors
1008(4)
15.08 Biological and chemical voltage probes
1012(4)
Precision standards and precision measurements 1016(10)
15.09 Frequency standards
1016(3)
15.10 Frequency, period, and time-interval measurements
1019(6)
15.11 Voltage and resistance standards and measurements
1025(1)
Bandwidth-narrowing techniques 1026(9)
15.12 The problem of signal-to-noise ratio
1026(1)
15.13 Signal averaging and multichannel averaging
1026(4)
15.14 Making a signal periodic
1030(1)
15.15 Lock-in detection
1031(3)
15.16 Pulse-height analysis
1034(1)
15.17 Time-to-amplitude converters
1035(1)
Spectrum analysis and Fourier transforms 1035(3)
15.18 Spectrum analyzers
1035(3)
15.19 Off-line spectrum analysis
1038(1)
Self-explanatory circuits 1038(5)
15.20 Circuit ideas
1038(5)
APPENDIXES 1043(52)
Appendix A The oscilloscope 1045(5)
Appendix B Math review 1050(3)
Appendix C The 5% resistor color code 1053(1)
Appendix D 1% Precision resistors 1054(2)
Appendix E How to draw schematic diagrams 1056(3)
Appendix F Load lines 1059(3)
Appendix G Transistor saturation 1062(2)
Appendix H LC Butterworth filters 1064(4)
Appendix I Electronics magazines and journals 1068(1)
Appendix J IC prefixes 1069(3)
Appendix K Data sheets 1072(1)
2N4400-1 NPN transistor 1073(5)
LF411-12 JFET operational amplifier 1078(8)
LM317 3-terminal adjustable regulator 1086(9)
Bibliography 1095(6)
Index 1101

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program