did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9783540657224

Reliability of Electronic Components : A Practical Guide to Electronic Systems Manufacturing

by ;
  • ISBN13:

    9783540657224

  • ISBN10:

    3540657223

  • Format: Hardcover
  • Copyright: 1999-05-01
  • Publisher: Springer Verlag

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

List Price: $263.00 Save up to $229.59
  • Buy Used
    $197.25
    Add to Cart Free Shipping Icon Free Shipping

    USUALLY SHIPS IN 2-4 BUSINESS DAYS

Supplemental Materials

What is included with this book?

Table of Contents

1 INTRODUCTION
1(42)
1.1 Definition of reliability
1(1)
1.2 Historical development perspective
2(1)
1.3 Quality and reliability
3(2)
1.4 Economics and optimisation
5(1)
1.5 Probability; basic laws
5(6)
1.5.1 Probability distributions
6(3)
1.5.2 Basic reliability distribution theory
9(2)
1.6 Specific terms
11(4)
1.6.1 The generalised definition of l and MTBF
13(2)
1.7 Failures types
15(2)
1.7.1 Failures classification
16(1)
1.8 Reliability estimates
17(2)
1.9 ,,Bath-tub" failure curve
19(1)
1.10 Reliability of electronic systems
20(15)
1.10.1 Can the batch reliability be increased?
20(1)
1.10.2 What is the utility of screening tests?
21(3)
1.10.3 Derating technique
24(1)
1.10.4 About the testability of electronic and telecommunication systems
25(1)
1.10.5 Accelerated ageing methods for equipped boards
26(1)
1.10.6 Operational failures
27(2)
1.10.7 FMEA/FMECA method
29(1)
1.10.8 Fault tree analysis (FTA)
30(1)
1.10.8.1 Monte Carlo techniques
30(2)
1.10.9 Practical recommendations
32(1)
1.10.10 Component reliability and market economy
33(2)
1.11 Some examples
35(2)
References
37(6)
2 STATE OF THE ART IN RELIABILITY
43(50)
2.1 Cultural features
44(7)
2.1.1 Quality and reliability assurance
44(2)
2.1.2 Total quality management (TQM)
46(2)
2.1.3 Building-in reliability (BIR)
48(1)
2.1.4 Concurrent engineering (CE)
49(1)
2.1.5 Acquisition reform
50(1)
2.2 Reliability building
51(14)
2.2.1 Design for reliability
51(1)
2.2.2 Process reliability
52(1)
2.2.2.1 Technological synergies
53(1)
2.2.3 Screening and burn-in
54(2)
2.2.3.1 Burn-in
56(3)
2.2.3.2 Economic aspects of burn-in
59(1)
2.2.3.3 Other screening tests
60(1)
2.2.3.4 Monitoring the screening
61(4)
2.3 Reliability evaluation
65(22)
2.3.1 Environmental reliability testing
66(2)
2.3.1.1 Synergy of environmental factors
68(2)
2.3.1.2 Temperature cycling
70(2)
2.3.1.3 Behavior in a radiation field
72(1)
2.3.2 Life testing with noncontinous inspection
73(2)
2.3.3 Accelerated testing
75(2)
2.3.3.1 Activation energy depends on the stress level
77(1)
2.3.4 Physics of failure
78(3)
2.3.4.1 Drift, drift failures and drift behaviour
81(2)
2.3.5 Prediction methods
83(1)
2.3.5.1 Prediction methods based on failure physics
84(2)
2.3.5.2 Laboratory versus operational reliability
86(1)
2.4 Standardisation
87(1)
2.4.1 Quality systems
87(1)
2.4.2 Dependability
87(1)
References
87(6)
3 RELIABILITY OF PASSIVE ELECTRONIC PARTS
93(52)
3.1 How parts fail
93(1)
3.2 Resistors
94(11)
3.2.1 Some important parameters
97(1)
3.2.2 Characteristics
98(2)
3.2.3 Reasons for inconstant resistors [3.8]...[3.10]
100(1)
3.2.3.1 Carbon film resistors (Fig. 3.4)
101(1)
3.2.3.2 Metal film resistors
101(1)
3.2.3.3 Composite resistors (on inorganic basis)
101(1)
3.2.4 Some design rules
101(1)
3.2.5 Some typical defects of resistors
102(2)
3.2.5.1 Carbon film resistors
104(1)
3.2.5.2 Metal film resistors
104(1)
3.2.5.3 Film resistors
105(1)
3.2.5.4 Fixed wirewound resistors
105(1)
3.2.5.5 Variable wirewound resistors
105(1)
3.2.5.6 Noise behaviour
105(1)
3.3 Reliability of capacitors
105(27)
3.3.1 Introduction
105(2)
3.3.2 Aluminium electrolytic capacitors
107(1)
3.3.2.1 Characteristics
108(2)
3.3.2.2 Results of reliability research studies
110(1)
3.3.2.3 Reliability data
111(1)
3.3.2.4 Main failures types
111(1)
3.3.2.5 Causes of failures
112(1)
3.3.3 Tantalum capacitors
112(1)
3.3.3.1 Introduction
112(1)
3.3.3.2 Structure and properties
113(2)
3.3.3.3 Reliability considerations
115(1)
3.3.3.4 DC/C(0) variation with temperature
116(1)
3.3.3.5 The failure rate and the product CU
117(1)
3.3.3.6 Loss factor
117(1)
3.3.3.7 Impedance at 100 Hz
117(1)
3.3.3.8 Investigating the stability of 35 V tantalum capacitor
117(4)
3.3.3.9 The failure rate model
121(1)
3.3.4 Reliability comparison
121(2)
3.3.5 Another reliability comparison
123(1)
3.3.6 Polyester film / foil capacitors
124(1)
3.3.6.1 Introduction
124(1)
3.3.6.2 Life testing
125(1)
3.3.6.3 l as a function of temperature and load
126(1)
3.3.6.4 Reliability conclusions
127(2)
3.3.7 Wound capacitors
129(2)
3.3.8 Reliability and screening methods [3.37] [3.38]
131(1)
3.4 Zinc oxide (ZnO) varistors [3.39]...[3.45]
132(6)
3.4.1 Pulse behaviour of ZnO varistors
134(4)
3.4.2 Reliability results
138(1)
3.5 Connectors
138(3)
3.5.1 Specifications profile
139(1)
3.5.2 Elements of a test plan
140(1)
References
141(4)
4 RELIABILITY OF DIODES
145(26)
4.1 Introduction
145(1)
4.2 Semiconductor diodes
146(8)
4.2.1 Structure and properties
146(1)
4.2.2 Reliability tests and results
146(2)
4.2.3 Failure mechanisms
148(1)
a. Mechanical failure mechanisms
148(1)
b. Electrical failure mechanisms
148(1)
4.2.4 New technologies
149(1)
4.2.5 Correlation between technology and reliability
150(3)
4.2.6 Intermittent short-circuits
153(1)
4.3 Z diodes
154(9)
4.3.1 Characteristics
154(1)
4.3.2 Reliability investigations and results
155(3)
4.3.3 Failure mechanisms
158(1)
4.3.3.1 Failure mechanisms of Z diodes
159(1)
4.3.3.2 Design for reliability
160(1)
4.3.3.3 Some general remarks
161(1)
4.3.3.4 Catastrophic failures
162(1)
4.3.3.5 Degradation failures
162(1)
4.4 Trans-Zorb diodes
163(1)
4.4.1 Introduction
163(1)
4.4.2 Structure and characteristics
163(1)
4.5 Impatt (IMPact Avalanche and Transit-Time) diodes
163(6)
4.5.1 Reliability test results for HP silicon single drift Impatt diodes
165(1)
4.5.2 Reliability test results for HP silicon double drift Impatt diodes
166(1)
4.5.3 Factors affecting the reliability and safe operation
166(3)
References
169(2)
5 RELIABILITY OF SILICON TRANSISTORS
171(26)
5.1 Introduction
171(1)
5.2 Technologies and power limitations
172(3)
5.2.1 Bipolar transistors
173(1)
5.2.2 Unipolar transistors
173(2)
5.3 Electrical characteristics
175(3)
5.3.1 Recommendations
176(1)
5.3.2 Safety Limits
176(1)
5.3.3 The du/dt phenomenon
177(1)
5.4 Reliability characteristics
178(2)
5.5 Thermal fatigue
180(2)
5.6 Causes of failures
182(3)
5.6.1 Failure mechanisms
182(1)
5.6.2 Failure modes
183(2)
5.6.3 A check-up for the users
185(1)
5.6.4 Bipolar transistor peripherics
185(1)
5.7 The package problem
185(1)
5.8 Accelerated tests
186(4)
5.8.1 The Arrhenius model
187(1)
5.8.2 Thermal cycling
188(2)
5.9 How to improve the reliability
190(1)
5.10 Some recommendations
191(2)
References
193(4)
6 RELIABILITY OF THYRISTORS
197(18)
6.1 Introduction
197(2)
6.2 Design and reliability
199(8)
6.2.1 Failure mechanisms
199(3)
6.2.2 Plastic and hermetic package problems
202(2)
6.2.3 Humidity problem
204(1)
6.2.4 Evaluating the reliability
204(2)
6.2.5 Thyristor failure rates
206(1)
6.3 Derating
207(2)
6.4 Reliability screens by General Electric
209(1)
6.5 New technology in preparation: SITH
210(3)
References
213(2)
7 RELIABILITY OF INTEGRATED CIRCUITS
215(32)
7.1 Introduction
215(4)
7.2 Reliability evaluation
219(5)
7.2.1 Some reliability problems
219(1)
7.2.2 Evaluation of integrated circuit reliability
219(2)
7.2.3 Accelerated thermal test
221(1)
7.2.4 Humidity environment
222(1)
7.2.5 Dynamic life testing
223(1)
7.3 Failure analysis
224(9)
7.3.1 Failure mechanisms
224(1)
7.3.1.1 Gate oxide breakdown
225(1)
7.3.1.2 Surface charges
226(1)
7.3.1.3 Hot carrier effects
226(1)
7.3.1.4 Metal diffusion
226(1)
7.3.1.5 Electromigration
227(1)
7.3.1.6 Fatigue
228(1)
7.3.1.7 Aluminium-gold system
229(1)
7.3.1.8 Brittle fracture
229(1)
7.3.1.9 Electrostatic Discharge (ESD)
229(1)
7.3.2 Early failures
230(1)
7.3.3 Modeling IC reliability
231(2)
7.4 Screening and burn-in
233(7)
7.4.1 The necessity of screening
233(2)
7.4.2 Efficiency and necessity of burn-in
235(2)
7.4.3 Failures at screening and burn-in
237(3)
7.5 Comparison between the IC families TTL Standard and TTL-LS
240(1)
7.6 Application Specific Integrated Circuits (ASIC)
240(1)
References
241(6)
8 RELIABILITY OF HYBRIDS
247(30)
8.1 Introduction
247(3)
8.2 Thin-film hybrid circuits
250(2)
8.2.1 Reliability characteristics of resistors
250(1)
8.2.2 Reliability of throughout-contacts
251(1)
8.3 Thick-film hybrids
252(5)
8.3.1 Failure types
253(1)
8.3.2 Reliability of resistors and capacitors
254(1)
8.3.3 Reliability of ,,beam-leads,,
254(3)
8.4 Thick-film versus thin-film hybrids
257(2)
8.5 Reliability of hybrid ICs
259(2)
8.6 Causes of failures
261(3)
8.7 Influence of radiation
264(1)
8.8 Prospect outlook of the hybrid technology
264(6)
8.9 Die attach and bonding techniques
270(4)
8.9.1 Introduction
270(1)
8.9.2 Hybrid package styles
271(3)
8.10 Failure mechanisms
274(1)
References
275(2)
9 RELIABILITY OF MEMORIES
277(36)
9.1 Introduction
277(6)
9.2 Process-related reliability aspects
283(5)
9.3 Possible memories classifications
288(2)
9.4 Silicon On Insulator (SOI) technologies
290(1)
9.4.1 Silicon on sapphire (SOS) technology
291(1)
9.5 Failure frequency of small geometry memories
291(1)
9.6 Causes of hardware failures
292(4)
9.6.1 Read only memories (ROMs)
294(2)
9.6.2 Small geometry devices
296(1)
9.7 Characterisation testing
296(9)
9.7.1 Timing and its influence on characterisation and test
298(1)
9.7.2 Test and characterisation of refresh
298(1)
9.7.2.1 Screening tests and test strategies
299(2)
9.7.3 Test-programmes and -categories
301(1)
9.7.3.1 Test categories
301(1)
9.7.3.2 RAM failure modes
302(1)
9.7.3.3 Radiation environment in space; hardening approaches
303(2)
9.8 Design trends in microprocessor domain
305(1)
9.9 Failure mechanisms of microprocessors
306(4)
References
310(3)
10 RELIABILITY OF OPTOELECTRONICS
313(16)
10.1 Introduction
313(3)
10.2 LED reliability
316(2)
10.3 Optocouplers
318(6)
10.3.1 Introduction
318(1)
10.3.2 Optocouplers ageing problem
318(2)
10.3.3 CTR degradation and its cause
320(1)
10.3.4 Reliability of optocouplers
321(2)
10.3.5 Some basic rules for circuit designers
323(1)
10.4 Liquid crystal displays
324(3)
10.4.1 Quality and reliability of LCDs
325(2)
References
327(2)
11 NOISE AND RELIABILITY
329(10)
11.1 Introduction
329(1)
11.2 Excess noise and reliability
330(1)
11.3 Popcorn noise
331(2)
11.4 Flicker noise
333(1)
11.4.1 Measuring noise
333(1)
11.4.2 Low noise, long life
333(1)
11.5 Noise figure
334(2)
11.6 Improvements in signal quality of digital networks
336(1)
References
336(3)
12 PLASTIC PACKAGE AND RELIABILITY
339(24)
12.1 Historical development
339(2)
12.2 Package problems
341(2)
12.2.1 Package functions
342(1)
12.3 Some reliabilistic aspects of the plastic encapsulation
343(1)
12.4 Reliability tests
344(8)
12.4.1 Passive tests
345(1)
12.4.2 Active tests
346(1)
12.4.3 Life tests
347(2)
12.4.4 Reliability of intermittent functioning plastic encapsulated ICs
349(3)
12.5 Reliability predictions
352(1)
12.6 Failure analysis
353(1)
12.7 Technological improvements
354(3)
12.7.1 Reliability testing of PCB equipped with PEM
356(1)
12.7.2 Chip-Scale packaging
356(1)
12.8 Can we use plastic encapsulated microcircuits (PEM) in high reliability applications?
357(2)
References
359(4)
13 TEST AND TESTABILITY OF LOGIC ICS
363(18)
13.1 Introduction
363(1)
13.2 Test and test systems
364(1)
13.2.1 Indirect tests
365(1)
13.3 Input control tests of electronic components
365(4)
13.3.1 Electrical tests
366(1)
13.3.2 Some economic considerations
367(1)
13.3.3 What is the cost of the tests absence?
368(1)
13.4 LIC selection and connected problems
369(4)
13.4.1 Operational tests of memories
370(1)
13.4.2 Microprocessor test methods
371(1)
13.4.2.1 Selftesting
371(1)
13.4.2.2 Comparison method
371(1)
13.4.2.3 Real time algorithmic method
372(1)
13.4.2.4 Registered patterns method
372(1)
13.4.2.5 Random test of microprocessors
373(1)
13.5 Testability of LICs
373(3)
13.5.1 Constraints
374(1)
13.5.2 Testability of sequential circuits
374(1)
13.5.3 Independent and neutral test laboratories
375(1)
13.6 On the testability of electronic and telecommunications systems
376(3)
References
379(2)
14 FAILURE ANALYSIS
381(32)
14.1 Introduction [14.1]...[14.25]
381(2)
14.2 The purpose of failure analysis
383(3)
14.2.1 Where are discovered the failures?
383(1)
14.2.2 Types of failures
384(2)
14.3 Methods of analysis
386(6)
14.3.1 Electrical analysis
386(1)
14.3.2 X-ray analysis
387(1)
14.3.3 Hermeticity testing methods
388(1)
14.3.4 Conditioning tests
388(1)
14.3.5 Chemical means
388(1)
14.3.6 Mechanical means
389(1)
14.3.7 Microscope analysis
389(1)
14.3.8 Plasma etcher
389(1)
14.3.9 Electron microscope
389(1)
14.3.10 Special means
390(2)
14.4 Failure causes
392(1)
14.5 Some examples
393(17)
References
410(3)
15 APPENDIX
413(12)
15.1 Software-package RAMTOOL++ [15.1]
413(2)
15.1.1 Core and basic module R^(3) Trecker
413(1)
15.1.2 RM analyst
414(1)
15.1.3 Mechanicus (Maintainability analysis)
414(1)
15.1.4 Logistics
414(1)
15.1.5 RM FFT-module
415(1)
15.1.6 PPoF-module
415(1)
15.2 Failure rates for components used in telecommunications
415(3)
15.3 Failure types for electronic components [15.2]
418(1)
15.4 Detailed failure modes for some components
419(1)
15.5 Storage reliability data [15.3]
420(1)
15.6 Failure criteria. Some examples
420(1)
15.7 Typical costs for the screening of plastic encapsulated ICs
421(1)
15.8 Results of 1000 h HTB life tests for CMOS microprocessors
421(1)
15.9 Results of 1000 h HTB life tests for linear circuits
422(1)
15.10 Average values of the failure rates for some IC families
422(1)
15.11 Activation energy values for various technologies
423(1)
15.12 Failures at burn-in
424(1)
References
424(1)
GENERAL BIBLIOGRAPHY 425(30)
RELIABILITY GLOSSARY 455(18)
LIST OF ABBREVIATIONS 473(8)
POLYGLOT DICTIONARY OF RELIABILITY TERMS 481(20)
INDEX 501

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program