did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780132431712

DSP First A Multimedia Approach

by ; ;
  • ISBN13:

    9780132431712

  • ISBN10:

    0132431718

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 1997-12-30
  • Publisher: Prentice Hall
  • View Upgraded Edition
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $228.60

Summary

This hands on, multi-media package provides a motivating introduction to fundamental concepts, specifically discrete-time systems, for beginning engineering readers. This class-tested learning package can also be used as a self-teaching tool for anyone eager to discover more about DSP applications, multi-media signals, and MATLAB.Presents basic DSP concepts in a clear and intuitive style. Integrated laboratory projects related to music, sound and image processing and new MATLAB functions for basic DSP operations are also included.Appropriate for readers interested in mastering fundamental concepts in today's electrical and computer engineering curriculum.

Table of Contents

Preface xvii
1 Introduction
1(8)
1.1 Mathematical Representation of Signals
2(3)
1.2 Mathematical Representation of Systems
5(2)
1.3 Thinking About Systems
7(1)
1.4 The Next Step
8(1)
2 Sinusoids
9(39)
2.1 An Experiment with a Tuning Fork
10(2)
2.2 Review of Sine and Cosine Functions
12(3)
2.3 Sinusoidal Signals
15(5)
2.3.1 Relation of Frequency to Period
16(1)
2.3.2 Relation of Phase Shift to Time Shift
17(3)
2.4 Sampling and Plotting Sinusoids
20(3)
2.5 Complex Exponentials and Phasors
23(8)
2.5.1 Review of Complex Numbers
23(2)
2.5.2 Complex Exponential Signals
25(1)
2.5.3 The Rotating Phasor Interpretation
26(3)
2.5.4 Inverse Euler Formulas
29(2)
2.6 Phasor Addition
31(6)
2.6.1 Addition of Complex Numbers
32(1)
2.6.2 Phasor Addition Rule
32(2)
2.6.3 Phasor Addition Rule: Example
34(1)
2.6.4 MATLAB Demo of Phasors
35(1)
2.6.5 Summary of the Phasor Addition Rule
36(1)
2.7 Physics of the Tuning Fork
37(4)
2.7.1 Equations from Laws of Physics
37(3)
2.7.2 General Solution to the Differential Equation
40(1)
2.7.3 Listening to Tones
41(1)
2.8 Time Signals: More Than Formulas
41(1)
2.9 Summary and Links
42(1)
Problems
43(5)
3 Spectrum Representation
48(35)
3.1 The Spectrum of a Sum of Sinusoids
48(3)
3.1.1 Graphical Plot of the Spectrum
50(1)
3.2 Beat Notes
51(6)
3.2.1 Multiplication of Sinusoids
52(1)
3.2.2 Beat Note Waveform
52(2)
3.2.3 Amplitude Modulation
54(3)
3.3 Periodic Waveforms
57(5)
3.3.1 Synthetic Vowel
58(4)
3.4 More Periodic Signals
62(6)
3.4.1 Fourier Series: Analysis
62(1)
3.4.2 The Square Wave
63(1)
3.4.3 Triangle Wave
64(1)
3.4.4 Example of a Non-periodic Signal
65(3)
3.5 Time-Frequency Spectrum
68(5)
3.5.1 Stepped Frequency
71(1)
3.5.2 Spectrogram Analysis
72(1)
3.6 Frequency Modulation: Chirp Signals
73(4)
3.6.1 Chirp, or Linearly Swept Frequency
73(2)
3.6.2 A Closer Look at Instantaneous Frequency
75(2)
3.7 Summary and Links
77(1)
Problems
78(5)
4 Sampling and Aliasing
83(36)
4.1 Sampling
83(7)
4.1.1 Sampling Sinusoidal Signals
85(2)
4.1.2 The Sampling Theorem
87(1)
4.1.3 Aliasing
88(1)
4.1.4 Folding
89(1)
4.2 Spectrum View of Sampling
90(4)
4.2.1 Over-Sampling
90(2)
4.2.2 Aliasing Due to Under-Sampling
92(1)
4.2.3 Folding Due to Under-Sampling
93(1)
4.2.4 Maximum Reconstructed Frequency
94(1)
4.3 Strobe Demonstration
94(6)
4.3.1 Spectrum Interpretation
99(1)
4.4 Discrete-to-Continuous Conversion
100(9)
4.4.1 Alias Frequencies Due to Sampling
101(1)
4.4.2 Interpolation with Pulses
102(1)
4.4.3 Zero-Order Hold Interpolation
103(1)
4.4.4 Linear Interpolation
104(1)
4.4.5 Parabolic Interpolation
105(1)
4.4.6 Over-Sampling Aids Interpolation
106(1)
4.4.7 Ideal Bandlimited Interpolation
107(2)
4.5 The Sampling Theorem
109(2)
4.6 Summary and Links
111(1)
Problems
112(7)
5 FIR Filters
119(38)
5.1 Discrete-Time Systems
119(2)
5.2 The Running Average Filter
121(3)
5.3 The General FIR Filter
124(9)
5.3.1 An Illustration of FIR Filtering
125(2)
5.3.2 The Unit Impulse Response
127(4)
5.3.2.1 Unit Impulse Sequence
128(1)
5.3.2.2 Unit Impulse Response Sequence
129(1)
5.3.2.3 The Unit-Delay System
130(1)
5.3.3 Convolution and FIR Filters
131(2)
5.3.3.1 Computing the Output of a Convolution
131(2)
5.3.3.2 Convolution in MATLAB
133(1)
5.4 Implementation of FIR Filters
133(5)
5.4.1 Building Blocks
134(1)
5.4.1.1 Multiplier
134(1)
5.4.1.2 Adder
134(1)
5.4.1.3 Unit Delay
135(1)
5.4.2 Block Diagrams
135(3)
5.4.2.1 Other Block Diagrams
136(1)
5.4.2.2 Internal Hardware Details
137(1)
5.5 Linear Time-Invariant (LTI) Systems
138(4)
5.5.1 Time Invariance
139(1)
5.5.2 Linearity
140(1)
5.5.3 The FIR Case
141(1)
5.6 Convolution and LTI Systems
142(4)
5.6.1 Derivation of the Convolution Sum
142(2)
5.6.2 Some Properties of LTI Systems
144(2)
5.6.2.1 Convolution as an Operator
144(1)
5.6.2.2 Commutative Property of Convolution
145(1)
5.6.2.3 Associative Property of Convolution
146(1)
5.7 Cascaded LTI Systems
146(3)
5.8 Example of FIR Filtering
149(3)
5.9 Summary and Links
152(1)
Problems
152(5)
6 Frequency Response of FIR Filters
157(45)
6.1 Sinusoidal Response of FIR Systems
157(3)
6.2 Superposition and the Frequency Response
160(4)
6.3 Steady State and Transient Response
164(2)
6.4 Properties of the Frequency Response
166(3)
6.4.1 Relation to Impulse Response and Difference Equation
166(2)
6.4.2 Periodicity of H (w)
168(1)
6.4.3 Conjugate Symmetry
168(1)
6.5 Graphical Representation of the Frequency Response
169(7)
6.5.1 Delay System
170(1)
6.5.2 First Difference System
170(4)
6.5.3 A Simple Lowpass Filter
174(2)
6.6 Cascaded LTI Systems
176(3)
6.7 Running-Average Filtering
179(9)
6.7.1 Plotting the Frequency Response
180(4)
6.7.2 Cascade of Magnitude and Phase
184(1)
6.7.3 Experiment: Smoothing an Image
184(4)
6.8 Filtering Sampled Continuous-Time Signals
188(6)
6.8.1 Example: Low-Pass Averager
190(2)
6.8.2 Interpretation of Delay
192(2)
6.9 Summary and Links
194(1)
Problems
195(7)
7 z-Transforms
202(47)
7.1 Definition of the z-Transform
203(2)
7.2 The z-Transform and Linear Systems
205(3)
7.2.1 The z-Transform of an FIR Filter
205(3)
7.3 Properties of the z-Transform
208(3)
7.3.1 The Superposition Property of the z-Transform
208(1)
7.3.2 The Time-Delay Property of the z-Transform
209(1)
7.3.3 A General z-Transform Formula
210(1)
7.4 The z-Transform as an Operator
211(2)
7.4.1 Unit-Delay Operator
211(1)
7.4.2 Operator Notation
212(1)
7.4.3 Operator Notation in Block Diagrams
213(1)
7.5 Convolution and the z-Transform
213(7)
7.5.1 Cascading Systems
217(1)
7.5.2 Factoring z-Polynomials
218(1)
7.5.3 Deconvolution
219(1)
7.6 Relationship Between the z-Domain and the w-Domain
220(8)
7.6.1 The z-Plane and the Unit Circle
221(1)
7.6.2 The Zeros and Poles of H(z)
222(2)
7.6.3 Significance of the Zeros of H(z)
224(1)
7.6.4 Nulling Filters
225(1)
7.6.5 Graphical Relation Between z and w
226(2)
7.7 Useful Filters
228(8)
7.7.1 The L-Point Running Sum Filter
229(2)
7.7.2 A Complex Bandpass Filter
231(3)
7.7.3 A Bandpass Filter with Real Coefficients
234(2)
7.8 Practical Bandpass Filter Design
236(3)
7.9 Properties of Linear Phase Filters
239(3)
7.9.1 The Linear Phase Condition
239(2)
7.9.2 Locations of the Zeros of FIR Linear Phase Systems
241(1)
7.10 Summary and Links
242(1)
Problems
242(7)
8 IIR Filters
249(71)
8.1 The General IIR Difference Equation
250(1)
8.2 Time-Domain Response
251(10)
8.2.1 Linearity and Time Invariance of IIR Filters
254(1)
8.2.2 Impulse Response of a First-Order IIR System
254(2)
8.2.3 Response to Finite-Length Inputs
256(2)
8.2.4 Step Response of a First-Order Recursive System
258(3)
8.3 System Function of an IIR Filter
261(8)
8.3.1 The General First-Order Case
261(2)
8.3.2 The System Function and Block-Diagram Structures
263(4)
8.3.2.1 Direct Form I Structure
263(1)
8.3.2.2 Direct Form II Structure
264(1)
8.3.2.3 The Transposed Form Structure
265(2)
8.3.3 Relation to the Impulse Response
267(1)
8.3.4 Summary of the Method
268(1)
8.4 Poles and Zeros
269(3)
8.4.1 Poles or Zeros at the Origin or Infinity
270(1)
8.4.2 Pole Locations and Stability
271(1)
8.5 Frequency Response of an IIR Filter
272(6)
8.5.1 Frequency Response using MATLAB
274(2)
8.5.2 Three-Dimensional Plot of a System Function
276(2)
8.6 Three Domains
278(1)
8.7 The Inverse z-Transform and Some Applications
279(6)
8.7.1 Revisiting the Step Response of a First-Order System
280(2)
8.7.2 A General Procedure for Inverse z-Transformation
282(3)
8.8 Steady-State Response and Stability
285(4)
8.9 Second-Order Filters
289(13)
8.9.1 z-transform of Second-Order Filters
289(2)
8.9.2 Structures for Second-Order IIR Systems
291(2)
8.9.3 Poles and Zeros
293(2)
8.9.4 Impulse Response of a Second-Order IIR System
295(2)
8.9.4.1 Real Poles
296(1)
8.9.5 Complex Poles
297(5)
8.10 Frequency Response of Second-Order IIR Filter
302(5)
8.10.1 Frequency Response via MATLAB
303(2)
8.10.2 3-dB Bandwidth
305(1)
8.10.3 Three-Dimensional Plot of System Functions
305(2)
8.11 Example of an IIR Lowpass Filter
307(3)
8.12 Summary and Links
310(1)
Problems
311(9)
9 Spectrum Analysis
320(58)
9.1 Introduction and Review
321(3)
9.1.1 Review of the Frequency Spectrum
321(1)
9.1.2 A Spectrum Analyzer
322(2)
9.2 Spectrum Analysis by Filtering
324(4)
9.2.1 Frequency Shifting
324(1)
9.2.2 Measuring the Average Value
325(1)
9.2.3 Channel Filters
325(3)
9.3 Spectrum Analysis of Periodic Signals
328(12)
9.3.1 Periodic Signals
328(1)
9.3.2 Spectrum of a Periodic Signal
329(2)
9.3.3 Filtering with a Running Sum
331(1)
9.3.4 Spectrum Analysis Using Running-Sum Filtering
331(3)
9.3.5 The DFT: Discrete Fourier Transform
334(2)
9.3.6 DFT Examples
336(2)
9.3.7 The Fast Fourier Transform (FFT)
338(2)
9.4 Spectrum Analysis of Sampled Periodic Signals
340(3)
9.5 Spectrum Analysis of Nonperiodic Signals
343(12)
9.5.1 Spectrum Analysis of Finite-Length Signals
344(3)
9.5.2 Frequency Sampling
347(2)
9.5.3 Samples of the Frequency Response
349(2)
9.5.4 Spectrum Analysis of Continuing Nonperiodic Signals
351(4)
9.6 The Spectrogram
355(13)
9.6.1 Spectrograms in MATLAB
356(1)
9.6.2 Spectrogram of a Sampled Periodic Signal
357(2)
9.6.3 Resolution of the Spectrogram
359(2)
9.6.3.1 Resolution Experiment
360(1)
9.6.4 Spectrogram of a Musical Scale
361(2)
9.6.5 Spectrogram of a Speech Signal
363(5)
9.7 Filtered Speech
368(3)
9.8 The Fast Fourier Transform (FFT)
371(3)
9.8.1 Derivation of the FFT
371(3)
9.8.1.1 FFT Operation Count
373(1)
9.9 Summary and Links
374(2)
Problems
376(2)
Appendix A Complex Numbers
378(21)
A.1 Introduction
379(1)
A.2 Notation for Complex Numbers
380(4)
A.2.1 Rectangular Form
380(1)
A.2.2 Polar Form
381(1)
A.2.3 Conversion: Rectangular and Polar
381(2)
A.2.4 Difficulty in Second or Third Quadrant
383(1)
A.3 Euler's Formula
384(1)
A.3.1 Inverse Euler Formulas
385(1)
A.4 Algebraic Rules for Complex Numbers
385(3)
A.4.1 Exercises
388(1)
A.5 Geometric Views of Complex Operations
388(5)
A.5.1 Geometric View of Addition
389(1)
A.5.2 Geometric View of Subtraction
390(1)
A.5.3 Geometric View of Multiplication
391(1)
A.5.4 Geometric View of Division
391(1)
A.5.5 Geometric View of Inverse
392(1)
A.5.6 Geometric View of Conjugate
393(1)
A.6 Powers and Roots
393(4)
A.6.1 Roots of Unity
394(3)
A.6.1.1 Procedure for Finding Multiple Roots
395(2)
A.7 Summary and Links
397(1)
Problems
398(1)
Appendix B Programming in MATLAB
399(16)
B.1 MATLAB Help
400(1)
B.2 Matrix Operations and Variables
400(3)
B.2.1 The Colon Operator
401(1)
B.2.2 Matrix and Array Operations
401(2)
B.2.2.1 A Review of Matrix Multiplication
402(1)
B.2.2.2 Pointwise Array Operations
403(1)
B.3 Plots and Graphics
403(2)
B.3.1 Figure Windows
404(1)
B.3.2 Multiple Plots
404(1)
B.3.3 Printing and Saving Graphics
405(1)
B.4 Programming Constructs
405(1)
B.4.1 MATLAB Built-in Functions
406(1)
B.4.2 Program Flow
406(1)
B.5 MATLAB Scripts
406(1)
B.6 Writing a MATLAB Function
407(3)
B.6.1 Creating A Clip Function
408(2)
B.6.2 Debugging a MATLAB M-file
410(1)
B.7 Programming Tips
410(5)
B.7.1 Avoiding Loops
411(1)
B.7.2 Repeating Rows or Columns
411(1)
B.7.3 Vectorizing Logical Operations
412(1)
B.7.4 Creating an Impulse
413(1)
B.7.5 The Find Function
413(1)
B.7.6 Seek to Vectorize
414(1)
B.7.7 Programming Style
414(1)
Appendix C Laboratory Projects
415(93)
C.1 Laboratory: Introduction to MATLAB
417(10)
C.1.1 Overview and Goals
417(1)
C.1.2 Warm-up
417(6)
C.1.2.1 Basic Commands
417(2)
C.1.2.2 MATLAB Array Indexing
419(1)
C.1.2.3 MATLAB Script Files
419(1)
C.1.2.4 MATLAB Demos
420(1)
C.1.2.5 MATLAB Sound
421(1)
C.1.2.6 Functions
421(2)
C.1.2.7 Vectorization
423(1)
C.1.3 Exercises: Using MATLAB
423(1)
C.1.3.1 Manipulating Sinusoids with MATLAB
424(1)
C.1.4 Lab Review Questions
424(3)
C.2 Laboratory: Introduction to Complex Exponentials
427(6)
C.2.1 Overview
427(2)
C.2.1.1 Complex Numbers in MATLAB
427(1)
C.2.1.2 Sinusoid Addition Using Complex Exponentials
428(1)
C.2.1.3 Harmonic Sinusoids
429(1)
C.2.2 Warm-up
429(1)
C.2.2.1 Complex Numbers
429(1)
C.2.2.2 Sinusoidal Synthesis with an M-File
429(1)
C.2.3 Exercises: Complex Exponentials
430(2)
C.2.3.1 Representation of Sinusoids with Complex Exponentials
430(1)
C.2.3.2 Verify Addition of Sinusoids Using Complex Exponentials
431(1)
C.2.4 Periodic Waveforms
432(1)
C.3 Laboratory: Synthesis of Sinusoidal Signals
433(10)
C.3.1 Overview
433(1)
C.3.2 Warm-up: Music Synthesis
433(5)
C.3.2.1 D-to-A Conversion
434(1)
C.3.2.2 Theory of Sampling
434(1)
C.3.2.3 Piano Keyboard
435(3)
C.3.3 Lab: Synthesis of Musical Notes
438(4)
C.3.3.1 Spectrogram of the Music
439(1)
C.3.3.2 Fur Elise
439(1)
C.3.3.3 Musical Tweaks
440(1)
C.3.3.4 Programming Tips
440(1)
C.3.3.5 Alternative Piece: Jesu, Joy of Man's Desiring
441(1)
C.3.3.6 Alternative Piece: Minuet in G
441(1)
C.3.3.7 Alternative Piece: Beethoven's Fifth Symphony
441(1)
C.3.3.8 Alternative Piece: Twinkle, Twinkle, Little Star
442(1)
C.3.4 Sound Evaluation Criteria
442(1)
C.4 Laboratory: AM and FM Sinusoidal Signals
443(13)
C.4.1 Overview
443(2)
C.4.1.1 Amplitude Modulation
443(1)
C.4.1.2 Frequency Modulated Signals
443(1)
C.4.1.3 Chirp, or Linearly Swept Frequency
444(1)
C.4.1.4 Advanced Topic: Spectrograms
444(1)
C.4.2 Warm-up
445(1)
C.4.2.1 MATLAB Synthesis of Chirp Signals
445(1)
C.4.3 Lab A: Chirps and Beats
446(2)
C.4.3.1 Synthesize a Chirp
446(1)
C.4.3.2 Beat Notes
446(1)
C.4.3.3 More on Spectrograms (Optional)
447(1)
C.4.4 Lab B: FM Synthesis of Instrument Sounds
448(4)
C.4.4.1 Generating the Bell Envelopes
449(1)
C.4.4.2 Parameters for the Bell
450(1)
C.4.4.3 The Bell Sound
451(1)
C.4.4.4 Comments about the Bell
452(1)
C.4.5 Woodwinds
452(4)
C.4.5.1 Generating the Envelopes for Woodwinds
452(1)
C.4.5.2 Scaling the Clarinet Envelopes
453(1)
C.4.5.3 Clarinet Envelopes
453(1)
C.4.5.4 Parameters for the Clarinet
454(1)
C.4.5.5 Experiment with the Clarinet Sound
455(1)
C.5 Laboratory: FIR Filtering of Sinusoidal Waveforms
456(7)
C.5.1 Overview of Filtering
456(2)
C.5.1.1 Frequency Response of FIR Filters
457(1)
C.5.2 Warm-up
458(1)
C.5.2.1 Frequency Response of the 3-Point Averager
458(1)
C.5.3 Lab: FIR Filters
459(4)
C.5.3.1 Filtering Cosine Waves
459(1)
C.5.3.2 First-Difference Filter
460(1)
C.5.3.3 Linearity of the Filter
460(1)
C.5.3.4 Time Invariance of the Filter
461(1)
C.5.3.5 Cascading Two Systems
461(2)
C.6 Laboratory: Filtering Sampled Waveforms
463(6)
C.6.1 Overview of Linear Filters
463(1)
C.6.2 Warm-up
464(1)
C.6.2.1 Properties of Discrete-Time Filters
464(1)
C.6.3 Laboratory: Sampling and Filters
465(4)
C.6.3.1 Filtering a Stair-Step Signal
465(1)
C.6.3.2 Implementation of Five-Point Averager
466(1)
C.6.3.3 Implementation of First-Difference System
466(1)
C.6.3.4 Implementation of First Cascade (Fig. C.11)
467(1)
C.6.3.5 Implementation of Second Cascade (Fig. C.12)
467(1)
C.6.3.6 Comparison of Systems of Figs. C.11 and C.12
467(1)
C.6.3.7 Filtering the Speech Waveform
467(2)
C.7 Laboratory: Everyday Sinusoidal Signals
469(12)
C.7.1 Background
469(5)
C.7.1.1 Background A: Telephone Touch Tone Dialing
469(1)
C.7.1.2 DTMF Decoding
470(1)
C.7.1.3 Background B: Amplitude Modulation (AM)
470(2)
C.7.1.4 AM Demodulation
472(1)
C.7.1.5 Envelope Detection (Peak Tracking)
472(1)
C.7.1.6 LTI filter-based demodulation
473(1)
C.7.1.7 Notch Filters for Demodulation
473(1)
C.7.2 Warm-up A: DTMF Synthesis
474(1)
C.7.2.1 DTMF Dial Function
474(1)
C.7.3 Warm-up B: Tone Amplitude Modulation
475(1)
C.7.4 Laboratory A: DTMF Decoding
475(3)
C.7.4.1 Filter Design
475(1)
C.7.4.2 A Scoring Function
476(1)
C.7.4.3 DTMF Decode Function
477(1)
C.7.4.4 Telephone Numbers
478(1)
C.7.5 Laboratory B: AM Waveform Detection
478(1)
C.7.6 Optional: Amplitude Modulation with Speech
479(2)
C.8 Laboratory: Filtering and Edge Detection of Images
481(11)
C.8.1 Overview
481(2)
C.8.1.1 Digital Images
481(1)
C.8.1.2 Displaying Images
481(2)
C.8.1.3 Image Filtering
483(1)
C.8.2 Warm-up: Display of Images
483(1)
C.8.2.1 Display Test
484(1)
C.8.3 Laboratory: Filtering Images
484(8)
C.8.3.1 One-Dimensional Filtering
484(1)
C.8.3.2 Blurring an Image
485(1)
C.8.3.3 More Image Filters
486(1)
C.8.3.4 Frequency Content of an Image
486(2)
C.8.3.5 The Method of Synthetic Highs
488(1)
C.8.3.6 Nonlinear Filters
489(1)
C.8.3.7 Edges in an Image
489(1)
C.8.3.8 The Slope-Threshold Function
490(1)
C.8.3.9 What's Nonlinear about Edge Detection?
491(1)
C.9 Laboratory: Sampling and Zooming of Images
492(5)
C.9.1 Overview
492(1)
C.9.2 Warm-up: Linear Interpolation
492(1)
C.9.3 Laboratory: Sampling of Images
493(4)
C.9.3.1 Reconstruction of Images
494(1)
C.9.3.2 Zooming for an Image
495(2)
C.10 Laboratory: The z-, n-, and w-Domains
497(5)
C.10.1 Objective
497(1)
C.10.2 Warm-up
497(1)
C.10.3 Laboratory: Relationships Between z-, n-, and w-domains
497(1)
C.10.4 Real Poles
498(1)
C.10.5 Complex Poles
498(1)
C.10.6 Filter Design
499(3)
C.11 Laboratory: Extracting Frequencies of Musical Tones
502(6)
C.11.1 Overview
502(1)
C.11.2 Warm-up: System Components
502(3)
C.11.2.1 Spectrogram Computation
502(2)
C.11.2.2 Generating the Window
504(1)
C.11.2.3 Display the Spectrogram
504(1)
C.11.2.4 Finding Peaks
504(1)
C.11.3 Design of the Music-Writing System
505(2)
C.11.3.1 Block Diagram for the System
505(1)
C.11.3.2 Write a Spectrogram Function
505(1)
C.11.3.3 Parameters of the Spectrogram
506(1)
C.11.3.4 Peak Picking and Editing
506(1)
C.11.3.5 Writing the Musical Score
507(1)
C.11.4 Testing the Music Extraction Program
507(1)
Appendix D About the CD
508(11)
Index 519

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program